
GPU-Based Static Data-Flow Analysis for Fast and
Scalable Android App Vetting

Xiaodong Yu∗§¶, Fengguo Wei†‖, Xinming Ou†, Michela Becchi‡, Tekin Bicer§, Danfeng (Daphne) Yao∗
∗Dept. of Computer Science, Virginia Tech, Blacksburg, VA

†Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL
‡Dept. of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC

§Data Science and Learning Division, Argonne National Laboratory, Lemont, IL

Email: xyu@anl.gov, fwei@mail.usf.edu, xou@usf.edu, mbecchi@ncsu.edu, tbicer@anl.gov, danfeng@vt.edu

Abstract—Many popular vetting tools for Android applica-
tions use static code analysis techniques. In particular, Inter-
procedural Data-Flow Graph (IDFG) construction is the com-
putation at the core of Android static data-flow analysis and
consumes most of the analysis time. Many analysis tools use a
worklist algorithm, an iterative fixed-point approach, to construct
the IDFG. In this paper, we observe that a straightforward
GPU parallelization of the worklist algorithm leads to signif-
icant underutilization of the GPU resources. We identify four
performance bottlenecks, namely, frequent dynamic memory allo-
cations, high branch divergence, workload imbalance, and irregular
memory access patterns. Accordingly, we propose GDroid, a
GPU-based worklist algorithm implementation with multiple
fine-grained optimizations tailored to common characteristics of
Android applications. The optimizations considered are: matrix-
based data structure, memory access-based node grouping, and
worklist merging. Our experimental evaluation, performed on
1000 Android applications, shows that the proposed optimizations
are beneficial to performance, and GDroid can achieve up to 128X
speedups against a plain GPU implementation.

Index Terms—GPU, static program analysis, data-flow analy-
sis, Android security, mobile application vetting, worklist algo-
rithm, application-specific optimization

I. INTRODUCTION

Android platforms nowadays hold 86% of the mobile device

OS market share [1]. Consequently, Android phones are a top

target of smartphone malware [2], [3]. Therefore, an efficient

Android Apps security vetting system is desirable to keep the

Google play store clean and safe. However, examining all new

and updated Apps in a timely manner is extremely challenging.

The Google Play store has currently more than 3.5M1 Apps,

most popular Apps update weekly or even daily, and around

7K2 new Apps are released everyday. On the other hand, state-

of-the-art vetting tools, such as DialDroid, can take 6K hours

to analyze 110K real-world Apps [4], which is not scalable.

Many existing popular Android vetting tools, including

FlowDroid [5], IccTA [6], DialDroid [4], and AmanDroid [7],

use static analysis at their core. Static analysis can provide

a comprehensive picture of the App’s possible behaviors,

¶Work performed during the PhD studies at Virginia Tech.
‖Currently affiliate with Android Security and Privacy Group, Google.

1https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

2https://www.statista.com/statistics/276703/android-app-releases-
worldwide/

Fig. 1: Execution time of Amandroid. We analyze 1000 random
Android Apps. The x-axis represents App indices sorted according to
the descending order of Amandroid run time, while the y-axis shows
the execution time. The blue line indicates the overall run time while
the orange line indicates the IDFG construction time.

whereas dynamic analysis can only screen the execution during

a dry run. However, static analysis suffers from an inher-

ent undecidability and has unbounded worst-case complexity.

Practically, any static analysis-based tool has to trade precision

for execution time. In order to preserve data-flow sensitivity,

static analysis tools typically take 30 minutes to analyze an

average-size (≈10MB) App [8]. As an example, we used

one of the most popular tools – Amandroid [7] – to analyze

1000 random Android Apps. The blue line in Fig. 1 shows

the analysis time: as can be seen, Amandroid can take up

to 38 minutes to analyze a single App. A faster and more

scalable implementation of static analysis for Android Apps

is obviously key to achieving efficient security vetting.

Over the last decade, Graphic Processing Units (GPU)

have gained popularity due to their massive parallelism and

computational power. GPUs have been successfully used to

accelerate applications from a variety of domains, including

bioinformatics [9], [10], biomedicine [11]–[13], and network

intrusion detection [14], [15], to name a few. However, only a

handful of previous works have accelerated program analysis

on GPU [16]–[18], and all of them have addressed only con-

ventional languages (e.g., C) using analysis approaches that are

quite different from Android’s. Moreover, they are insensitive

to the data-flows of the application. We are not aware of any

Android-specific static data-flow analysis implementation on

274

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00037

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

GPU.

Accelerating Android static data-flow analysis on GPU is

very challenging due to its irregular computational patterns.

The worklist algorithm, the computational core of Android

static data-flow analysis, has unstructured data accesses and

unbalanced workload that conflict with GPU’s execution

model. It has been shown that straightforward implementations

of irregular computational patterns [19] often lead to poor

GPU utilization. Indeed, we have verified that a naı̈ve GPU im-

plementation of the worklist algorithm (performed by simply

porting a CPU implementation of this algorithm to GPU) leads

to a significant underutilization of the GPU’s computational

resources (we provide the details in Section III). In some cases,

the naı̈ve GPU version of the code even underperforms the

CPU counterpart.

In this paper we propose GDroid, a highly optimized

GPU-based worklist algorithm for static data-flow analysis

of Android applications. To our best knowledge, this is the

first work accelerating Android program analysis on HPC

platforms. We first determine four performance bottlenecks

in our naı̈ve GPU implementation: frequent dynamic memory
allocations, high branch divergence, workload imbalance, and

irregular memory access patterns. We then propose three fine-

grained optimizations to address these bottlenecks. These opti-

mizations leverage Android-specific characteristics to refactor

the algorithm to make it more suited to the GPU architecture

and execution model. Specifically, we introduce the following

optimizations: (i) Matrix-based data structure: we store

data-facts using a fixed-size matrix-based data structure (rather

than the set-based data structure of the original CPU code).

This optimization can avoid dynamic memory allocations and

reduce memory consumption. (ii) Memory access-based node
grouping: we group ICFG nodes based on their memory ac-

cess patterns rather than their statement types. By significantly

reducing the number of ICFG node partitions (3 vs. 25), this

optimization limits branch divergence. In addition, it allows a

better use of the memory bandwidth. (iii) Worklist merging:

to mitigate the workload imbalance problem, we postpone

the processing of subsets of the worklist. By merging nodes

appearing multiple times in the worklist, this optimization can

also reduce the amount of operation performed.

We evaluate the three proposed optimizations using 1000

randomly selected Android APKs. We find that the first

and third optimizations can significantly improve performance

compared to the naı̈ve GPU implementation, while the second

optimization brings only slight performance benefits. The

combined use of the three optimizations, however, leads to the

optimal performance: GDroid achieves up to 128X speedups

over a plain GPU implementation.

Our contributions can be summarized as follows:

• We propose GDroid, a highly optimized GPU implemen-

tation of static data-flow analysis tailored to Android ap-

plications. GDroid is the first implementation of Android

program analysis on HPC platforms and serves as the

core of fast Android App security vetting.

• We perform a straightforward GPU parallelization of

Android’s static data-flow analysis, and identify four per-

formance bottlenecks. Accordingly, by leveraging char-

acteristics of Android applications, we propose three

fine-grained optimizations to address these performance

bottlenecks: matrix-based data structure, memory access

based node grouping, and worklist merging.

• We evaluate the efficacy of our proposed optimizations

using 1000 Android Apps. Our results show that GDroid
achieves up to 128X speedups over a plain GPU imple-

mentation.

The rest of this paper is organized as the follows. In section 2,

we provide the backgrounds regarding static data-flow analysis

and the worklist algorithm. In section 3, we introduce our

straightforward GPU implementation and analyze its perfor-

mance bottlenecks. In section 4, we propose our GDroid and

elaborate the Android-specific optimizations. In section 5, we

provide the relate works. In section 6 and 7, we discuss and

conclude the paper.

II. BACKGROUND

In this section, we provide some background information

on static program analysis for Android applications. We first

introduce Android static data-flow analysis and then present

the Worklist algorithm for Inter-procedural Data-Flow Graph

(IDFG) construction.

A. Static Data-Flow Analysis for Android Apps

The ultimate goal of static analysis for Android applications

is to achieve a minimum false positive rate while capturing

all potentially dangerous App behaviors. The creators of

Amandroid [7] pointed out that abnormal data flow behav-

ior is a common phenomenon of many security problems.

Accordingly, Amandroid conducts static data-flow analysis

at its core to build the application’s Inter-procedural Data-

Flow Graph (IDFG), and then it performs specific analyses by

adding plugins on top of the IDFG. This approach computes all

objects’ points-to information in a context- and flow-sensitive

way. Thanks to the IDFG reuse, it shows better versatility

and efficiency than other tools focusing on specific analysis

tasks. However, due to the time consuming IDFG construction,

Amandroid is more computationally expensive. Fig 1 shows

a breakdown of Amandroid running time. The orange line

indicates the IDFG construction time. As can be seen, this

computation takes at least 58% and up to 96% of the total

Amandroid execution time. This fact urges us to accelerate

IDFG construction on GPU.

B. The Worklist Algorithm for IDFG Construction

An IDFG consists of an Inter-procedural Control-Flow

Graph (ICFG) and the node-wise data-fact sets. The data-facts

indicate the objects’ points-to information. Formally, let C be

an Android component, the IDFG can be defined as follows:

IDFG(EC) ≡ ((N,E), {fact(n)|n ∈ N}) (1)

275

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Worklists
{entry}

{L1}

{L2, L4}

{L3, L5}

{L6}

{L7}

{…, L1}

{…, L2, L4}

Fig. 2: A sample Inter-procedural Data-Flow Graph (IDFG). Each
box is an ICFG node, and each node has a data-fact set colored in
red. The blue arrow-lines indicate the ICFG paths.

where EC is the environment method of C, N and E are the

nodes and edges of the ICFG starting from EC , and fact(n)
is the data-fact set of the statement associated with node n.

Fig. 2 shows a sample IDFG. Each ICFG node is associated

with a initially empty data-fact set fact(i){}. The worklist

algorithm constructs IDFG by generating the data-facts and

flowing them along the ICFG paths into the corresponding sets.

Alg. 1 presents the worklist algorithm. The while loop (ln. 10-

ln. 14) is the computational core that iteratively processes

the nodes to generate and propagate the data-facts. In each

iteration, the algorithm pops out the nodes from the current

worklist in turn and processes them through the analyzer

ProcessNode() (ln. 11-ln. 13). ProcessNode() analyzes each

node to generate the facts and propagates them to the node’s

successors. Any updated successors then are collected into a

set nodes (ln. 13) to form the next worklist (ln. 14). The

algorithm keeps iterating until all nodes are visited and all

data-fact sets reach the fixed-point (i.e., the next worklist is

empty).

Algorithm 1: the Worklist Algorithm for IDFG Construction

1 Require: entry point procedure EP;
2 Ensure: IDFG //Inter-procedural Data-Flow Graph
3 Procedure IDFGBuilding(EP)
4 icfg ≡ (N,E); //load the Inter-procedural Control-Flow Graph

/* give one data-fact set to each ICFG node */
5 for ni ∈ N do
6 new empty Set fact(i){};
7 ni ← fact(i){};
8 new empty List worklist ;
9 worklist ← EntryNodeEP ; //initialize worklist

10 while worklist �= ∅ do
11 n ← worklist.front(); //get the source node
12 worklist.pop front();
13 nodes ← ProcessNode(icfg,n); //generate and propogate

the data-facts
14 worklist ← nodes; //form next worklist
15 return (icfg, fact{})

The worklist Algorithm shares some similarities with the

BFS and DFS algorithms, but has two major differences: it

propagates the data-facts and revisits the nodes. For example,

in Fig. 2, after visiting node L7, the algorithm updates L1’s

data-fact set fact(i) to fact(i)′ and re-insert L1 into the

worklist for revisiting. These two differences prevent the direct

Algorithm 2: Kernel of Plain GPU Implementation

1 int *h icfg, *h stmt, *h fact set; //ICFG nodes, statement
information, and data-fact sets

/* copy data from host to device using dual-buffering */
2 d icfg←h icfg; d stmt←h stmt; d fact set←h fact set;
3 Kernel P WORKLIST(d icfg, d stmt, d fact set)
4 local int current worklist, next worklist; //in shared memory

/* two-level parallelization */
5 int nid ←− threadIdx.x; //one thread processes one node

/* SBDA enables different blocks to process different methods */
6 int mid ←− blockIdx.x ∗ blockDim.x;
7 current worklist ←− init nodes[mid];
8 while !current worklist.empty() do
9 for i ∈ current worklist.size()%32 do

10 if nid+i∗32 < current worklist.size() then
/* different threads handle different ICFG nodes */

11 src ←− current worklist.pop(nid); //get the
source node

12 d fact set(mid, src) ←−
GEN KILL(d stmt(mid, src)); //generate the
data-facts

13 dest ←− SEARCH(d icfg(mid, src)); //collect the
destination nodes

/* propagate the data-facts and form next worklist */
14 for n ∈ dest do
15 d fact set(mid, n) ∪ d fact set(mid, src);
16 if d fact set(mid, n).update() then
17 next worklist.insert(n);

18 syncthread;
19 current worklist ←− next worklist;
20 h fact set ← d fact set; //copy the results back to host

reuse of existing optimized GPU implementations of BFS and

DFS.

III. OUR PLAIN GPU IMPLEMENTATION

In this section, we present our plain GPU implementation, as

described in Alg. 2. It is termed plain implementation since it

uses only generic approaches without refactoring the algorithm

by leveraging any Android-specific characteristics. We first

introduce the basic implementation designs, and then analyze

the performance bottlenecks.

A. Plain Implementation Design

The plain implementation employs two fine-grained generic

GPU implementation techniques, including dual-buffering and

two-level parallelization.

1) Dual-Buffering Data Transfer: The worklist algorithm

can consume tens of GB memory during a single Android

App analysis, which could easily exceed the memory capacity

of the commodity GPU. Once the excess happens, we have to

divide the ICFG to sub-graphs and process them in turn on

GPU. This approach renders multiple data copy ins and outs

between CPU and GPU. Although recent advance technologies

like NVLink and unified memory can speed up the transfer,

CPU-GPU data communication is still one of the major

bottlenecks of the GPU performance.

To hide the data transfer overhead, we employ the dual

buffering approach by leveraging the asynchronous execution

of CUDA kernel and data-transfer engine (Alg. 2 line 2).

We allocate two buffers in the GPU memory and create

two CUDA execution streams. As the starting point, Stream

276

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

……

,…}

Fig. 3: The two-level parallelization. Different methods are processed
in different SM. Each core handles one ICFG node in the current
corresponding worklist.

1 copies the first sub-graph to Buffer 1. It then launches

the kernel to process the first sub-graph, and simultaneously,

Stream 2 copies the second sub-graph to Buffer 2. The kernel

engine keeps processing sub-graphs alternating between the

two buffers until the worklist algorithm converges. With dual-

buffering, the (i+1)th data communication overhead is hidden

by overlapping the ith kernel execution.

2) Two-level Parallelization: GPU architecture supports

two-level parallelism, as depicted in Fig. 3. It is intuitive to

map each ICFG node in the worklist onto a CUDA thread

(Alg. 2 line 5 and line 10-17). In order to leverage the

thread-block level parallelism, we employ the Summary-based

Bottom-up Data-flow Analysis (SBDA) [20] to make the

Android method analyses parallelizable. The Android methods

have dependencies due to the call statements. SBDA generates

an unified heap manipulation summary for each method, and

lets the IDFG construction utilize the summaries to avoid

method revisiting and interleaving. Hence the methods at the

same layer are independent of other methods and can be

processed by different thread-blocks simultaneously (Alg. 2

line 6). Though the SBDA is conservative, it can still preserve

the flow and context-sensitive [21].

B. Performance Analysis

We evaluate the efficiency of our plain GPU implementation

using a dataset containing 1K Android Apps. We first compare

its execution time to the CPU counterpart and then discover

the performance bottlenecks.

1) Comparison with CPU Counterpart: We run our plain

implementation on an NVIDIA TESLA P40 GPU. To make

the CPU counterpart fairly comparable to the GPU version, we

re-implement the worklist algorithm in Amandroid 3 (written

in Scala) using multithreading C. Fig. 4 shows the performance

comparison between the GPU and CPU implementations. The

plain GPU implementation can only achieve 1.81X speedups

against the CPU on average. The ultimate achievement is

3.39X speedups, and for the majority (65.9%) of the Apps,

GPU only achieves less than 2X speedups (the sky-blue area).

For 7.3% of the Apps, GPU even runs slower than the CPU

(the red area). Apparently, the plain implementation largely

underutilizes the GPU’s computation capacity.

3https://github.com/arguslab/Argus-SAF.git

Fig. 4: The performance comparison between the plain GPU imple-
mentation and the CPU counterpart. The x-axis represents the App
indices sorted according to the descending order of the improvements.
The y-axis indicates the speedups compared to the CPU version.

2) Performance Bottlenecks: As described in Section II-B,

the worklist algorithm is an irregular application to the GPU.

We reveal four performance bottlenecks existing in the plain

GPU implementation caused by the incompatibility between

the original worklist algorithm’s computation patterns and the

GPU’s architecture.

Frequent Dynamic Memory Allocations Although re-

searchers try to mitigate the overhead of GPU dynamic mem-

ory allocation [22] recently, it is still a major performance

bottleneck due to the hardware limitation. The original work-

list algorithm use the set data structure to store the data-facts.

The exact size of each set is unable to be foreknown; hence

we should pre-allocate a fixed-size GPU memory space for

each set. The worklist algorithm keeps updating the sets by

inserting new data-facts. In the case that the data-fact’s volume

exceeds the pre-allocated set size, GPU has to dynamically re-

allocate the memory space for it. Pre-allocating large space for

each set might decrease the frequency of dynamic allocations,

but can lead to memory waste.

Large Branch Divergences The GPU executes in the sin-

gle instruction multiple threads (SIMT) fashion. Too many

branches can degrade the performance to nearly serial exe-

cution. Unfortunately, the original worklist algorithm classi-

fies the ICFG nodes based on their statement or expression

types, and can render 25 different node groups. Specifi-

cally, there are nine categories of statements in Android

apps: AssignmentStatement, EmptyStatement, MonitorState-
ment, ThrowStatement, CallStatement, GoToStatement, Ifstate-
ment, ReturnStatement, and SwitchStatement. Furthermore, As-
signmentStatement consists of 17 different types of expression:

AccessExpr, BinaryExpr, CallRhs, CastExpr, CmpExpr, Con-
stClassExpr, ExceptionExpr, IndexingExpr, InstanceOfExpr,

LengthExpr, LiteralExpr, VariableNameExpr, StaticFieldAc-
cessExpr, NewExpr, NullExpr, TupleExpr, and UnaryExpr.

This grouping scheme renders dozens of branches, which is a

disaster to the GPU execution.

Load Imbalances In the worklist algorithm context, an ideally

balanced workload is a worklist with the node number that is

a multiple of the CUDA warp size. It can ultimately utilize

the GPU resources since no CUDA cores will be idle during

277

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Kernel of Our GDroid
/* use matrix-based data structure to substitute set-baed one */
/* group the ICFG nodes according to the memory-access pattern */

1 d icfg grp←h icfg; d stmt grp←h stmt; d fact mat←h fact;
2 Kernel GDROID (d icfg grp, d stmt grp, d fact mat)
3 local int worklist;
4 int nid ←− threadIdx.x;
5 int mid ←− blockIdx.x ∗ blockDim.x;
6 while !worklist.empty() do

/* partially sort the worklist for grouping optimization */
7 worklist.sort();

/* process only head list due to worklist merging optimization */
8 if nid < worklist.size() && nid < 32 then
9 src ←− worklist.pop(nid);

/* use matrix entry lookup to substitute set update */
10 d fact mat(mid,

src).lookup(GEN KILL(d stmt grp(mid, src)));
11 dest ←− SEARCH(d icfg grp(mid, src));
12 for n ∈ dest do
13 d fact mat(mid, n).lookup(d fact mat(mid,

src));
/* merge the dest nodes into the current worklist */

14 if d fact mat(mid, n).update() then
15 worklist.merge(n);
16 syncthread;
17 h fact ← d fact mat;

execution. However, between each iteration, the worklist size

can sharply differ from one another. Each worklist size is

decided by the ICFG structure and unpredictable, makes the

GPU implementation very hard to achieve load balance.
Irregular Memory Access Patterns Achieving coalesced

memory accesses is essential for exploiting GPU’s massive

memory bandwidth capacity. Each GPU memory access reads

or writes a 128B memory block. An ideal regular access

pattern achieves coalesced memory access by serving all 32

threads in a CUDA warp with the 128B block. Otherwise,

multiple memory accesses should be performed and leads

to bandwidth wastes. Similar to graph traversal problems,

the worklist algorithm’s accesses to the ICFG nodes are un-

structured, making it extremely difficult to guarantee efficient

bandwidth utilization. Moreover, different Android statements

and expressions have different memory access patterns, and

the data-fact sets are dynamically changing. These make the

memory access pattern of the worklist algorithm even more

irregular.

IV. THE OPTIMIZATION DESIGNS

In the section, we propose our GDroid consisting of three

optimizations aiming to break through the performance bot-

tlenecks described above. These optimizations refactor the

worklist algorithm by leveraging fine-grained Android-specific

characteristics to make it compatible with the GPU’s architec-

ture and execution model. Alg. 3 describes the GDroid with

all three optimizations applied. The statements implementing

the optimizations are highlighted in red. We elaborate the three

optimizations in the rest of the section.

A. MAT: Matrix-based Data Structure for Storing the Data-
Facts

The original worklist algorithm uses the set data structure

to store the data-facts since it can efficiently insert newly-

Fig. 5: (a) The data-facts stored in the original set-based data struc-
ture. (b) The corresponding data-fact matrix using MAT optimization.

Fig. 6: A worklist processing example using our GRP optimization.
Three colors indicate the node types: one-time fact-generation, single-
layer, and double-layer.

generated facts. However, the set data structure can signifi-

cantly degrade the GPU-based implementation’s performance

due to the frequent dynamic memory allocations. Moreover,

we find that many repetitive data-facts exist among different

data-fact sets. Fig. 5(a) shows some sample data-fact sets of

different ICFG nodes stored using the set data structure. We

can see that data-fact sets of nodes L2, L3, and L4 have

exactly the same facts. These repetitions are caused by data-

fact propagation and waste a large amount of memory.

A data-fact is a pair consisting of a slot and an instance.

We observe that the pools of slot and instance can be pre-

determined prior to the worklist algorithm. The algorithm

generates a data-fact by combining a specific slot and an

instance from each pool then propagates it along the ICFG

paths. Accordingly, in our first optimization, we propose the

matrix-based data structure (MAT) (Alg. 3 line 1) to substitute

the original set-based data structure for the data-facts. Fig. 5(b)

shows a sample data-fact matrix. The rows of the matrix

represent the slot pool, and the columns represent the instance
pool. Once the algorithm generates and propagates a data-

fact to a node, it marks the corresponding cell of the matrix.

With the MAT optimization, we replace the re-allocating and

updating of the dynamic-sized sets by the entry looking-up of

the fixed-sized matrices (Alg. 3 line 10). The matrix operations

are classical regular computation patterns for GPU. Moreover,

this optimization can reduce memory consumption due to

removing repetitive data-facts.

We implement this optimization by using the fixed-size bit-

masks to store matrix cells. Specifically, for a method having

n statements, we use an n-bit bit-mask to implement one

cell, each bit representing a statement. When a data-fact is

propagated to a statement, the corresponding bit is set to 1.

This implementation can further reduce the memory usage.

278

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

B. GRP: Memory Access Pattern-Based Node Grouping

The original worklist algorithm classifies the ICFG nodes

based on their statement or expression types. This classifica-

tion scheme works well on CPU but is significantly inefficient

on GPU due to a large number of divergences. We observe that

this statement type-based grouping is not necessary if we pre-

determine slot and instance pools. As indicated in section V-B,

generating and propagating the data-facts can be converted

to looking-up and combining the entries from the two pools.

Accordingly, we propose a memory access pattern-based ICFG

node grouping scheme for the GPU implementation. Specif-

ically, we discover that there are only three memory access

patterns existing:

(i) The one-time fact-generation pattern, e.g., ConstClassEx-
pression, NullExpression, LiteralExpression. The nodes

with this pattern only generate new data-facts at the

first visiting. Any re-visiting of these nodes will only

propagate the data-facts.

(ii) The single-layer pattern, e.g., VariableNameExpression,

StaticFieldAccessExpression. The nodes with this pattern

require single de-reference. It means every visiting of

them might produce new fact and should access the global

memory once.

(iii) The double-layer pattern, e.g., AccessExpression, In-
dexingExpression. The nodes with this pattern require

double de-reference. It means every visiting of them

might produce new fact and should access the global

memory twice.

Accordingly, our optimization classifies the ICFG nodes into

three groups and stores the nodes in the same group consecu-

tively at GPU memory (Alg. 3 line 1). After each worklist is

formed, the optimization performs a partial sort to cluster the

nodes in the worklist based on their groups (Alg. 3 line 7).

Our optimized grouping scheme can significantly reduce the

divergences, given that it has only three groups. Moreover, it

can maximize the coalesced memory accesses. Fig. 6 shows an

example of optimized node grouping usage. In this case, after

the node grouping, each CUDA warp will always process the

nodes with the same memory access pattern hence minimize

the branch divergence. Furthermore, each memory access

has a significant chance to serve multiple threads since the

nodes in the same group are stored together, consequently can

maximize memory bandwidth utilization.

C. MER: Worklist Merging

We observe that many worklists can lead to imbalanced

workloads in the GPU. For instance, if a worklist has 36

ICFG nodes, GPU needs two warps to process it. The second

warp has only four threads in effect, hence wastes the GPU’s

computational resources. Moreover, we find that the original

worklist algorithm has many redundant node analyses. In the

example shown in Fig. 2, node L4 is processed twice in both

the third and eighth worklists due to data-fact updating. How-

ever, since the data-fact propagation in the worklist algorithm

is monotone, Fact’(4) inevitably is the superset of Fact(4). In

{N0,… N31, N32, N33, N34, N35}36 source nodes
in current worklist

process only

Nx,…, N33, … Nydestination nodes
Merge into current worklist
and remove the repetition

{Nx,… Ny, N32, N33, N34, N35}
divide to and lists
for next iteration

.…
..

next worklist

Fig. 7: A worklist merging (MER) example. It eliminates the tail list
(imbalanced workload) processing and the redundancy (N33).

other words, avoiding processing the L4 in the third worklist

will not affect the final IDFG results.

Aiming to solve this load imbalance issue and remove

the redundancies, we propose the worklist merging (MER)

optimization. In this optimization, we divide each worklist

into two sub-lists: the head list and the tail list. The head list
contains the number of nodes that can fully occupy a CUDA

warp, while the tail list contains the remaining nodes (the

imbalance sub-workload). In each iteration, we first process

the head list (Alg. 3 line 8) and collect their destination

nodes. Instead of processing the tail list, we then merge the

destination nodes with the tail list and remove the repetitive

nodes to form the next worklist(Alg. 3 line 15). Fig. 7 shows

an example of the worklist merging optimization. The head list

has 32 nodes hence can fully occupy the warp. The algorithm

collects the destination nodes of the head list and merges them

with the tail list that has only four nodes. It then removes the

repetitive node N33 and forms the next worklist. The algorithm

keeps processing the worklists in this manner until reaching

the fix-point. Postponing the tail list processing can ultimately

mitigate the load imbalance and avoid redundant operations.

And since the worklist algorithm is insensitive to the node

processing order, the MER will not affect the final results.

V. OPTIMIZATION EVALUATIONS

In this section, we evaluate the efficacy of our GDroid. We

run the experiments on the machines quipped with a 10-cores

Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz, 64GB RAM

system memory, and NVIDIA TESLA P40 GPU. This Pascal

micro-architectural GPU has 24GB total global memory and

30 streaming-multiprocessors (SM). Each SM has 128 CUDA

cores and a 48KB shared memory. The CUDA version is 10.

We use the multithreading C-based Amandroid described in

section III-B1 as the CPU counterpart and test the GDroid,

the plain GPU implementation, and the CPU counterpart over

the same 1000 App dataset. These Apps are randomly selected

from different categories. Their characteristics are listed in

table I.

We currently manually tune the parameters. Empirically 4-

5 thread-blocks/Streaming-Multiprocessor (SM) achieves op-

timal GPU utilization. When the total number of methods

is much larger than the number of SM, we assign multiple

279

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Dataset Characteristics

no. of CFG Nodes no. of Methods

6217 268

no. of Variable max Worklist length

116 74

Fig. 8: The GDroid’s performance overview. The x-axis indicates the
App indices while the y-axis indicates performance speedups against
the plain GPU implementation.

methods (usually 3-4) to one block, instead of the basic one-

method-per-block approach. We leave the auto-tuning design

as future work.

We verify the output of the GPU implementations with the

original IDFG. Neither the GDroid nor the plain GPU im-

plementation affects the IDFG correctness. In this evaluation,

we plan to answer two questions: (i) Can GDroid with com-

bined optimizations achieve the optimal performance? (ii) To

what extent can each optimization independently improve the

performance?

A. Overview of GDroid’s Performance

Fig. 8 shows the performance comparison of GDroid with

various optimization combinations by using the performance

of plain GPU implementation as the baseline. The x-axis

shows the App indices sorted according to the descending or-

der of the GDroid’s performance. The y-axis shows the perfor-

mance speedups against the baseline. The figure indicates that

applying all three optimizations to the GPU implementation

can achieve the optimal performance: a 128X peak speedup

and 71.3X average speedup against the plain GPU implemen-

tation. As also can be seen, the matrix-based data structure

(MAT) and the worklist merging (MER) optimizations can

largely improve the performance of GPU implementation.

Though the memory access pattern based node grouping

(GRP) optimization can also improve the performance, it is

not significant. In the following sections, we will zoom in the

performance and evaluate each optimization respectively.

B. Evaluation of Matrix Data Structure Optimization

We firstly apply the matrix-based data structure (MAT)

optimization and compare the performance to the plain GPU

implementation (the baseline), as shown in Fig. 9. The x-axis

shows the App indices while the y-axis shows the performance

speedups against the baseline. Notice that we sort the Apps

based on the descending order of the improvements.

Fig. 9: The efficacy evaluation of matrix-based data structure op-
timization (MAT) by comparing to the performance of plain GPU
implementation (the baseline). The x-axis indicates the App indices
while the y-axis indicates the execution time speedups against the
baseline.

Fig. 10: The memory footprint comparison between the matrix-based
and the original set-based data structures for storing the data-facts.
The x-axis indicates the App indices while the y-axis indicates the
memory footprint.

The comparison indicates that MAT optimization can sig-

nificantly improve the performance of GPU implementation. It

achieves at least 7.6X and up to 92.4X and 26.7X on average

speedups against the plain GPU implementation. For 59.4%

of the Apps, the MAT can improve 20X-40X performance

(the sky-blue area in Fig. 9). The performance improvement is

remarkable because MAT optimization can eliminate dynamic

memory allocation, which is one of the major GPU perfor-

mance bottlenecks.

Since MAT optimization is also designed to reduce memory

consumption, we compare its memory footprint to the footprint

of the original set-based data structure. Fig. 10 shows the

comparison between these two data structures. As can be

seen, the matrix-based data structure can reduce 75% memory

consumption on average. It at most needs 34% memory space

compared to the set-based data structure. The MAT data

structure can significantly reduce the memory footprint thanks

to the elimination of storing repetitive data-facts.

C. Evaluation of Memory-Access Pattern-Based Node Group-
ing Optimization

In this section, we apply the memory-access pattern-based

node grouping (GRP) optimization in addition to the GPU

implementation with MAT (the baseline). Fig. 11 shows the

280

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: The efficacy evaluation of memory-access pattern-based node
grouping (GRP) optimization by comparing to the performance of
GPU implementation with only MAT optimization (the baseline).
The x-axis indicates the App indices while the y-axis indicates the
execution time speedups against the baseline.

TABLE II: Worklist Profiling

Worklist sizes
≤32 >32 & ≤64 >64

before MER 87.6% 4.3% 8.1%

after MER 74.4% 11.9% 13.7%

no. of Worklist iteration
average max min

before MER 5.6K 6.8K 4.3K

after MER 4.5K 5.8K 3.6K

performance comparison between the GPU implementation

with and without the GRP optimization. The y-axis shows the

speedup of the GRP over the baseline. Notice that the baseline

in this figure is the GPU implementation with MAT rather

than the plain GPU implementation. Accordingly, the speedup

is the improvement in addition to the MAT optimization. For

example, 1.43X in Fig. 11 indicates the speedup against MAT
and is equivalent to 38.2X (1.43*26.7) speedup against plain

GPU implementation.

As can be seen, the GRP can only slightly improve perfor-

mance. For 76.3% of the Apps, it only achieves less than 1.5X

speedups (the sky-blue area in Fig. 11); for 15.5% of the Apps,

it even degrades the performance (the red area in Fig. 11).

This performance degradation is caused by the fact that most

worklists have small sizes. Table II shows the profiling results

of the worklists. The third line of the table indicates that,

on average, 87.6% of the worklists in one IDFG construction

instance have less than 32 ICFG nodes. It means that most of

the worklists can fit into a single warp, hence they cannot take

the divergence reduction merit of GRP but will suffer from its

sorting overhead. However, thanks to the increasing of the

coalesced memory access rate, in some cases, the GRP can

still achieve a slight improvement in the overall performance.

D. Evaluation of Worklist Merging Optimization

We finally apply the worklist merging (MER) optimization

in addition to the GPU implementation with both MAT and

GRP optimizations. Fig. 12 shows the performance compari-

son between the GPU implementation with and without MER.

The y-axis shows the performance speedups compared to GPU

Fig. 12: The efficacy evaluation of worklist merging (MER) optimiza-
tion by comparing to the performance of GPU implementation with
MAT+GRP optimization (the baseline). The x-axis indicates the App
indices while the y-axis indicates the execution time speedups against
the baseline.

implementation without MER (the baseline). We emphasize

that here the baseline is not the plain GPU implementation but

rather the implementation with both MAT and GRP. Accord-

ingly, the speedup indicates the improvement over MAT+GRP,

namely, 1.94X represents 74X(1.94*1.43*26.7) speedup over

plain GPU implementation.

As can be seen, the MER optimization can significantly

improve performance. It can achieve up to 4.76X speedups

over the baseline performance. For a majority of the Apps

(67.4%), the MER can achieve 1.5X-3X speedups (the sky-

blue area in Fig. 12). The average performance increase is

1.94X.

The improvement by using MER is significant since it can

efficiently reduce the number of worklist algorithm iterations

and enlarge the worklist sizes. The eighth line of Table II

indicates that, on average, the MER optimization can decrease

1.1K iterations in one worklist algorithm instance. Besides the

iteration reduction, it merges the tail list with the predecessor

worklists, thus can enlarge the sizes of the worklist. The fourth

line of Table II indicates that 25.6% worklists require more

than one warp to process. Hence the MER can boost the

divergence reduction benefits of the GRP optimization.

E. Evaluation Summary

• Our GDroid can achieve up to 128X speedups against the

plain GPU implementation.

• The MAT and MER optimizations can significantly im-

prove the GPU implementation’s performance (20X-40X)

while the GRP can slightly improve it (less than 1.5X).

• The MAT can also reduce 75% memory usage.

VI. RELATED WORK

Many tools have been proposed for applying the static

analysis of Android security problems. FlowDroid [5] first

builds a call graph based on Spark/Soot [23] by performing a

flow-insensitive points-to analysis, then conducts the taint and

on-demand alias analysis based on the call graph. FlowDroid

performs only partially text- and flow-sensitive analysis due

to the computational cost concerns [24]. IccTA [6] extends

281

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

FlowDroid by adopting IC3 [25] Intent resolution engine.

IccTA can track data flows through regular Intent calls and

returns but can’t through remote procedure call (RPC). On

the contrary, DroidSafe [26] tracks both Intent and RPC calls

but can’t track data flows through “stateful ICC” nor inter-app

analysis. DialDroid [4] is a scalable and accurate tool designed

for inter-app Inter-Component Communication (ICC) analyses.

It makes a balance of the data-flow analysis accuracy and run-

time cost.

Each of the above tools is built to perform one or several

specific kinds of static analysis and is not flexible to extend

the capability. On the other hand, Amandroid [7] provides

generic support to multiple Android static analyses. It builds

the DFG and DDG, then adds low-cost plugins to realize

various specific analyses. Amandroid calculates all objects’

points-to information in a context- and flow-sensitive way.

Although this boosts the precision, it drastically increases the

computation burdens [8].

The DFG is constructed through Inter-procedural Data-flow

Analysis. This data-flow analysis is conducted using iterative

algorithms. The conventional iterative search algorithm visits

each ICFG node once in one iteration, and keeps iterating

until no further changes occur to the data-flow sets [27].

This approach has a regular computation pattern hence can

leverage the well-studied depth-first and breadth-first search

(BFS/DFS) [28]–[35] to efficiently visit the CFG in each iter-

ation. However, it has large redundancy and slow convergence

due to the fixed full workload in each iteration. The work-

list algorithm is an alternative that dynamically updates the

worklist after each node visiting. The inter-procedural, finite,

distributive subset (IFDS) [36] and its extension, the inter-

procedural distributed environment transformers (IDE) [37],

are two well-known conceptual frameworks using the worklist

algorithm as the core. Some optimizations [38]–[40] have

been proposed to algorithmically improve the IFDS efficiency.

Recently, two mature IFDS/IDE implementations gain massive

popularity. IBM releases T.J. Watson Libraries for Analysis

(WALA) implementing the IFDS [41]. Heros [42] provides

IFDS/IDE solver on top of Soot [43]. Although the worklist

algorithm algorithmically outperforms the conventional algo-

rithm, it still potentially requires high computational cost due

to the unpredictable number of iterations. Even worse, the

dynamic update of the worklist makes the computation pattern

pretty irregular and extremely hard to be parallelized.

All aforementioned work only target on executing the anal-

yses on sequential platforms. The existing works on executing

static analyses on modern parallel platforms are rare, and only

a handful of them use GPUs. Prabhu et al. [16] accelerate

the 0CFA, a higher-order control-flow analysis algorithm,

with GPU. They leverage the sparse-matrix to optimize CFG

data structures and achieves 72X speedups over the CPU

version. Mendez-Lojo et al. [17] accelerate the Andersen-

style inclusion-based point-to analysis on GPU. They treat

the analysis as a graph modification and traversal problem

and focus on providing general insights about implementing

graph algorithms on GPU. Su et al. [18] also implement

Andersen’s inclusion-based pointer analysis. Their design has

a similar idea to [17] and proposes several techniques to

further optimize the implementation. They claim their work

can achieve 46% speedup against [17]. Each of the above

three work targets only on one specific type of analysis, and

the design is not directly applicable to other static analyses.

Moreover, none of them associates the algorithm with specific

language or file type; significant application-specific tuning

may be required when applying their algorithms to analyze

real-world cases.

VII. TAKEAWAYS

Application-Specific Optimizations Many domain applica-

tions have complex computation patterns. For example, our

Android program analysis has set updating and fixed-point

iterations in addition to the node traversal. Our work, along

with some other previous researches, has shown that straight-

forward implementations or even utilizing optimized generic

libraries for these applications are insufficient to fully leverage

the parallel devices’ capacity. Moreover, some well-studied op-

timization approaches are not directly applicable. For example,

in our case, the generic optimization – allocating fixed memory

space, is not usable unless we pre-determine the data-fact sets’

size by exploiting the data-flow analysis’s characteristics. This

paper provides a further illustration indicating that fine-grained

application-specific optimizations are the key to broaden the

applicability of high-performance platforms e.g., GPU.

High-Performance Implementations of Security Applica-
tions Typical cybersecurity solutions emphasize on achieving

defense functionalities. Our statistical results [44] show that

only around 5% of recent top-tier security conference papers

consider the high-performance implementations, and less than

1% of recent top-tier HPC conference papers focus on security

applications. We believe the irregular computation patterns, for

example, the pattern in this work and the Finite-State Machine

for the Network Intrusion Detection [45], [46], particularly

deter the HPC-based implementations of security application.

On the other hand, execution efficiency and scalability of

the security applications are equally important, especially

for real-world deployment. Our work provides an instance

showcasing that security applications can also benefit from the

power of HPC devices with fine-grained application-specific

implementations and optimizations.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose GDroid, a highly optimized GPU-

based worklist algorithm for Android static data-flow analysis.

We first design the plain GPU implement using only general

approaches, including dual-buffering data transfer and two-

level parallelization. We experimentally show this plain imple-

mentation is largely inefficient and discover four major perfor-

mance bottlenecks: frequent dynamic memory allocation, large

branch divergences, load imbalance, and the irregular memory

access pattern. Accordingly, we leverage Android-specific

characteristics and propose three fine-grained optimizations,

including matrix-based data structure for data-facts, memory

282

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

access pattern based node grouping, and worklist merging. The

matrix-based data structure is also designed to reduce memory

consumption. In our evaluation, the experiment results show

that all three optimizations, especially the matrix-based data

structure and worklist merging optimizations, can improve the

performance. The optimal GPU implementation can achieve

up to 128X speedups against plain GPU optimization. The

matrix-based data structure can save 75% memory space on

average compared to the set-based data structure.

In the future, given the amount of Android Apps is large,

we consider to map the worklist algorithm onto multi-GPU

platforms or even GPU clusters. This kind of implementation

requires sophisticated designs regarding data partitions and

communications between GPUs [47], [48]. Besides, we can

implement the algorithm on other emerging parallel devices,

e.g., Automata Processor (AP) [49]. AP is approved to be more

efficient than GPU for some traversal-based algorithms [50],

[51]. There is room for an optimized AP-based worklist

algorithm.

ACKNOWLEDGEMENTS

This work has been supported by ONR under Grant

ONR-N00014-17-1-2498, NSF under the grants CNS-

1565314/1838271, CNS-1717862, CCF-1741683, and the U.S.

Department of Energy, Office of Science, Advanced Scientific

Computing Research and Basic Energy Sciences, under Con-

tract DE-AC02-06CH11357. The authors thank Drs. Matthew

Hicks and Ali Butt for their feedback on the work.

REFERENCES

[1] Gartner. Gartner Says Worldwide Sales of Smartphones
Returned to Growth in First Quarter of 2018, 2018.
https://www.gartner.com/newsroom/id/3876865.

[2] Karim O Elish, Xiaokui Shu, Danfeng Daphne Yao, Barbara G
Ryder, and Xuxian Jiang. Profiling user-trigger dependence for
Android malware detection. Computers & Security, 49:255–
273, 2015.

[3] Ke Tian, Danfeng Yao, Barbara G Ryder, and Gang Tan.
Analysis of code heterogeneity for high-precision classification
of repackaged malware. In 2016 IEEE Security and Privacy
Workshops (SPW), pages 262–271. IEEE, 2016.

[4] Amiangshu Bosu, Fang Liu, Danfeng Daphne Yao, and Gang
Wang. Collusive data leak and more: Large-scale threat analysis
of inter-app communications. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security,
pages 71–85. ACM, 2017.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[6] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques
Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick McDaniel. IccTA: De-
tecting Inter-component Privacy Leaks in Android Apps. In
Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pages 280–291. IEEE Press,
2015.

[7] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Aman-
droid: A precise and general inter-component data flow analysis

framework for security vetting of Android apps. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1329–1341. ACM, 2014.

[8] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do Android
taint analysis tools keep their promises? In Proceedings of
the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 331–341. ACM, 2018.

[9] Kaixi Hou, Hao Wang, and Wu-chun Feng. AAlign: A SIMD
Framework for Pairwise Sequence Alignment on x86-Based
Multi-and Many-Core Processors. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages
780–789, May 2016.

[10] Jing Zhang, Hao Wang, and Wu-chun Feng. cublastp: Fine-
grained parallelization of protein sequence search on CPU+
GPU. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 14(4):830–843, 2017.

[11] Xiaodong Yu, Hao Wang, Wu-chun Feng, Hao Gong, and
Guohua Cao. cuART: Fine-Grained Algebraic Reconstruction
Technique for Computed Tomography Images on GPUs. In
2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2016.

[12] Xiaodong Yu, Hao Wang, Wu-chun Feng, Hao Gong, and
Guohua Cao. An enhanced image reconstruction tool for com-
puted tomography on GPUs. In Proceedings of the Computing
Frontiers Conference, CF’17. ACM, 2017.

[13] Xiaodong Yu, Hao Wang, Wu-chun Feng, Hao Gong, and
Guohua Cao. GPU-based iterative medical CT image recon-
structions. Journal of Signal Processing Systems, 91(3-4):321–
338, 2019.

[14] Xiaodong Yu and Michela Becchi. GPU Acceleration of
Regular Expression Matching for Large Datasets: Exploring the
Implementation Space. In Proceedings of the ACM International
Conference on Computing Frontiers, CF ’13, pages 18:1–18:10,
New York, NY, USA, 2013. ACM.

[15] Xiaodong Yu. Deep packet inspection on large datasets: algo-
rithmic and parallelization techniques for accelerating regular
expression matching on many-core processors. University of
Missouri-Columbia, 2013.

[16] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary
Hall. EigenCFA: Accelerating Flow Analysis with GPUs.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
’11, pages 511–522, New York, NY, USA, 2011. ACM.

[17] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali.
A GPU implementation of inclusion-based points-to analysis.
In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’12,
pages 107–116, New York, NY, USA, 2012. ACM.

[18] Yu Su, Ding Ye, Jingling Xue, and Xiang-Ke Liao. An efficient
GPU implementation of inclusion-based pointer analysis. IEEE
Transactions on Parallel and Distributed Systems, 27(2):353–
366, 2016.

[19] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, Dec 2006.

[20] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv.
Precise and compact modular procedure summaries for heap
manipulating programs. In ACM SIGPLAN Notices, volume 46,
pages 567–577. ACM, 2011.

[21] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and
Xiaosong Zhang. JN-SAF: Precise and Efficient NDK/JNI-
aware Inter-language Static Analysis Framework for Security

283

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Vetting of Android Applications with Native Code. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1137–1150. ACM, 2018.

[22] Isaac Gelado and Michael Garland. Throughput-oriented GPU
memory allocation. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming (PPoPP ’19),
pages 27–37. ACM, 2019.

[23] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick
Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing
Java bytecode using the Soot framework: Is it feasible? In
International conference on compiler construction, pages 18–
34. Springer, 2000.

[24] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Highly Precise Taint Analysis
for Android Applications. Technical report, EC SPRIDE, 2013.

[25] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha,
and Patrick McDaniel. Composite constant propagation: Appli-
cation to Android inter-component communication analysis. In
Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 77–88. IEEE Press, 2015.

[26] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei
Gilham, Nguyen Nguyen, and Martin C. Rinard. Information
Flow Analysis of Android Applications in DroidSafe. In NDSS,
2015.

[27] Darren C Atkinson and William G Griswold. Implementation
techniques for efficient data-flow analysis of large programs. In
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’01), page 52. IEEE Computer Society,
2001.

[28] Pawan Harish and PJ Narayanan. Accelerating large graph algo-
rithms on the GPU using CUDA. In International conference on
high-performance computing, pages 197–208. Springer, 2007.

[29] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle
Olukotun. Accelerating CUDA Graph Algorithms at Maximum
Warp. In Proceedings of the 16th ACM Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’11, pages
267–276, 2011.

[30] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scal-
able GPU graph traversal. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 117–128, 2012.

[31] Jatin Chhugani, Nadathur Satish, Changkyu Kim, Jason Sewall,
and Pradeep Dubey. Fast and efficient graph traversal algorithm
for CPUs: Maximizing single-node efficiency. In Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 378–389. IEEE, 2012.

[32] Federico Busato and Nicola Bombieri. BFS-4K: an efficient
implementation of BFS for kepler GPU architectures. IEEE
Transactions on Parallel and Distributed Systems, 26(7):1826–
1838, 2014.

[33] Hang Liu and H Howie Huang. Enterprise: Breadth-first graph
traversal on GPUs. In High Performance Computing, Network-
ing, Storage and Analysis, 2015 SC-International Conference
for, pages 1–12. IEEE, 2015.

[34] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu,
Andy Riffel, and John D. Owens. Gunrock: A high-performance
graph processing library on the GPU. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’16, pages 11:1–11:12, 2016.

[35] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang,
and Xiaodong Zhang. Sep-graph: finding shortest execution
paths for graph processing under a hybrid framework on GPU.
In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, pages 38–52. ACM, 2019.

[36] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise
interprocedural dataflow analysis via graph reachability. In

Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 49–61. ACM,
1995.

[37] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise
interprocedural dataflow analysis with applications to constant
propagation. Theoretical Computer Science, 167(1-2):131–170,
1996.

[38] Derek Rayside and Kostas Kontogiannis. A generic worklist al-
gorithm for graph reachability problems in program analysis. In
Software Maintenance and Reengineering, 2002. Proceedings.
Sixth European Conference on, pages 67–76. IEEE, 2002.

[39] Hakjoo Oh. Large spurious cycle in global static analyses and its
algorithmic mitigation. In Asian Symposium on Programming
Languages and Systems, pages 14–29. Springer, 2009.

[40] Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez.
Practical extensions to the IFDS algorithm. In Interna-
tional Conference on Compiler Construction, pages 124–144.
Springer, 2010.

[41] IBM. T.J. Watson Libraries for Analysis (WALA).
http://wala.sourceforge.net/wiki/index.php/Main˙Page.

[42] Eric Bodden. Inter-procedural data-flow analysis with IFD-
S/IDE and Soot. In Proceedings of the ACM SIGPLAN
International Workshop on State of the Art in Java Program
analysis, pages 3–8. ACM, 2012.

[43] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot: A Java bytecode
optimization framework. In CASCON First Decade High Impact
Papers, pages 214–224. IBM Corp., 2010.

[44] Xiaodong Yu. Algorithms and Frameworks for Accelerating
Security Applications on HPC Platforms. PhD thesis, Virginia
Tech, 2019.

[45] Xiaodong Yu, Bill Lin, and Michela Becchi. Revisiting state
blow-up: Automatically building augmented-FA while preserv-
ing functional equivalence. IEEE Journal on Selected Areas in
Communications, 32(10):1822–1833, Oct 2014.

[46] Xiaodong Yu, Wu-chun Feng, Danfeng (Daphne) Yao, and
Michela Becchi. O3FA: A Scalable Finite Automata-based
Pattern-Matching Engine for Out-of-Order Deep Packet Inspec-
tion. In Proceedings of the 2016 Symposium on Architectures
for Networking and Communications Systems, ANCS ’16, pages
1–11, New York, NY, USA, 2016. ACM.

[47] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh,
Xiangyong Ouyang, Sayantan Sur, and Dhabaleswar K Panda.
Optimized non-contiguous MPI datatype communication for
GPU clusters: Design, implementation and evaluation with
MVAPICH2. In 2011 IEEE International Conference on Cluster
Computing, pages 308–316. IEEE, 2011.

[48] Hao Wang, Sreeram Potluri, Devendar Bureddy, Carlos Rosales,
and Dhabaleswar K Panda. GPU-aware MPI on RDMA-
enabled clusters: Design, implementation and evaluation. IEEE
Transactions on Parallel and Distributed Systems, 25(10):2595–
2605, 2013.

[49] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng,
and Michela Becchi. Demystifying Automata Processing:
GPUs, FPGAs or Micron’s AP? In Proceedings of the Interna-
tional Conference on Supercomputing, ICS ’17. ACM, 2017.

[50] Indranil Roy, Nagakishore Jammula, and Srinivas Aluru. Algo-
rithmic techniques for solving graph problems on the automata
processor. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 283–292. IEEE, 2016.

[51] Xiaodong Yu, Kaixi Hou, Hao Wang, and Wu-chun Feng.
Robotomata: A Framework for Approximate Pattern Matching
of Big Data on an Automata Processor. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data), 2017.

284

Authorized licensed use limited to: University of South Florida. Downloaded on May 18,2023 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

