
JN-SAF: Precise and Efficient NDK/JNI-aware Inter-language
Static Analysis Framework for Security Vetting of Android

Applications with Native Code
Fengguo Wei

University of South Florida

fwei@mail.usf.edu

Xingwei Lin

University of Electronic Science and

Technology of China

xwlin.roy@gmail.com

Xinming Ou

University of South Florida

xou@usf.edu

Ting Chen

University of Electronic Science and

Technology of China

brokendragon@uestc.edu.cn

Xiaosong Zhang

University of Electronic Science and

Technology of China

johnsonzxs@uestc.edu.cn

ABSTRACT
Android allows application developers to use native language (C/C++)

to implement a part or the complete program. Recent research and

our own statistics show that native payloads are commonly used in

both benign and malicious apps. Current state-of-the-art Android

static analysis tools, such as Amandroid, FlowDroid, DroidSafe, Ic-

cTA, and CHEX avoid handling native method invocation and apply

conservative models for their data-flow behavior. None of those

tools have the capability to capture the inter-language dataflow.

We propose a new approach to conduct inter-language dataflow

analysis for security vetting of Android apps and build an analysis

framework, called JN-SAF to compute flow and context-sensitive

inter-language points-to information in an efficient way. We show

that: 1) Precise and efficient inter-language dataflow analysis is

completely feasible with support of a summary-based bottom-up

dataflow analysis (SBDA) algorithm, 2) A comprehensive model of

Java Native Interface (JNI) and Native Development Kit (NDK) for

binary analysis is essential as none of the existing binary analysis

frameworks is able to handle Android binaries, 3) JN-SAF is capable

of capturing inter-language security issues in real-world Android

apps as demonstrated by our evaluation result.

CCS CONCEPTS
• Security and privacy→ Software and application security;

KEYWORDS
Static Analysis; Mobile Security

ACM Reference Format:
Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang.

2018. JN-SAF : Precise and Efficient NDK/JNI-aware Inter-language Static

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243835

Analysis Framework for Security Vetting of Android Applications with

Native Code. In 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243835

1 INTRODUCTION
Android continuously dominates the smartphonemarketwith about

76% share according to Statcounter [6]. Recent study [9, 24, 29, 40,

42, 45–47] have shown that native code is a continuous threat which

might stealthily leak sensitive information or utilize Android mal-

ware to evade AV detection. Our statistics on 100,000 Google Play

applications also show that there is substantial usage (39.7%) of

native code in benign apps, and the majority (> 80%) of those na-

tive method invocations involve data communication. This raises

a major concern about how we can make sure the native code are

not malicious.

There is a long line of works [10, 12, 13, 15, 17, 21, 23, 25, 28,

30, 34, 38, 41, 43, 44] that design or utilize static analysis tools to

detect security issues in Android applications. Only a couple of

them [10, 34] address security issues related to native code. How-

ever, none of them can track precise inter-language dataflow. The

existing state-of-the-art Android static analysis frameworks, such

as Amandroid [43, 44], FlowDroid [12], DroidSafe [21], IccTA [23]

and CHEX [25], do not currently provide the capability to per-

form inter-language dataflow analysis or handle native compo-

nents. When encountering a native method invocation, all of the

existing dataflow analysis frameworks either apply a conservative

model which assumes any data flow could happen, or ignore the

side-effects produced by the native call, which will cause major

imprecision in the analysis result. There is an urgent need to de-

sign a comprehensive dataflow analysis framework that can track

dataflows across language boundaries and understand dataflow

behaviors in both the “Java world” and the “native world.”

Android Inter-language Analysis Challenges:
(1) Dataflow analysis for Dalvik-bytecode and for native binary

have totally different algorithms and representations of object

points-to information. How to have a unified representation to

integrate the dataflow analysis results from both worlds is a

significant challenge.

https://doi.org/10.1145/3243734.3243835
https://doi.org/10.1145/3243734.3243835

(2) A practical dataflow analysis framework needs to find the good

balance between precision and efficiency. Precise dataflow anal-

ysis is computationally heavy for both Java world and native

world. Both worlds can influence dataflow facts with each other,

leading to many interleaving in the dataflow analysis. How to

limit the analysis context switch frequency and still keep good

precision is a major challenge.

(3) Android provides a Native Development Kit (NDK) [1] which

allows the developer to design app in native language (C/C++).

NDK enables native Activity component, provides a set of na-

tive libraries to assist native code to access Android-specific

features and uses Java Native Interface (JNI) as the communi-

cation bridge. Precisely tracking dataflows in native Activity

component and modeling NDK libraries and JNI data structures

are significant challenges.

The main contributions of this work are as follows.
(1) We adopt a summary-based bottom-up dataflow analysis (SBDA)

approach to compute flow and context-sensitive inter-language

dataflow information in an efficient way. The summary-based

nature of SBDA enables us to design unified heap manipulation

summary representation for both Java world and native world

dataflow analysis. The bottom-up approach allows us to only

visit each method exactly once to compute summary ∆ and

reuse ∆ when a caller method invokes it.

(2) We comprehensively model control and data flow behavior for

the Native component, NDK libraries, and JNI data structures

to enable existing binary analysis tool, such as angr [36] to
understand Android-specific data flows.

(3) we design JN-SAF— a precise and efficient NDK/JNI-aware

inter-language analysis framework for Android apps. For the

best of our knowledge, JN-SAF is the first Android static analy-

sis framework that performs inter-language dataflow tracking.

Our evaluation result shows that JN-SAF is capable of doing

real-world app vetting, and is able to find interesting cross-

language security issues. We plan to release the executable and

source code of JN-SAF upon publication of the paper.

The rest of the paper is organized as follows. Section 2 presents

the background information with a motivating example. Section 3

discusses challenges and our solutions, whereas Section 4 describes

in detail JN-SAF architecture. We discuss evaluation results of our

approach in Section 5, limitation of JN-SAF in Section 6, related

research in Section 7, and conclude in Section 8.

2 BACKGROUND AND EXAMPLE
We provide necessary background information to understand how

Android native world works, and how the inter-language communi-

cation is handled. We also provide a motivating example to discuss

the challenges to track static data-flow for Android application with

the native world.

2.1 Native Code Usage Modes in Android
Android developers can introduce native code in two ways. In

the first mode, the developer can write certain functions in native

language (C/C++) and include the compiled binary as a shared

object as part of the application. Those functions are then called

by an Android component that is still written in Java. In the other

mode, a complete component can be written in native code and

the Android runtime directly calls the life-cycle methods of the

component in the native code. Currently Android only allows the

second mode for the Activity component (called native Activity).
Whereas all four Android component types could involve native

code through the first mode.

2.2 Native Development Kit (NDK)
The Native Development Kit (NDK) [1] is a set of tools that allow

designing part of the Android application using native languages.

NDK provides platform libraries to help manage native Activity

components and access physical device components. It uses Java

Native Interface (JNI) [3] as the interface via which the Java and

C++ components talk to one another. It is mainly used in cases such

as improving performance, reusing existing third-party C or C++

libraries, and so on.

NDK together with JNI defines how Java code sends data to

native functions and receives return values, and how native code

creates/modifies/inspects Java objects and invokes Java methods.

Since Android 2.3, NDK provides a helper library which allows the

developer to design a whole Android Activity using native code.

To precisely handle inter-language dataflow in Android, JN-SAF
must have a comprehensive model for JNI related data structures

and native Activity as explained in Section 3.

2.3 A Motivating Example
A malicous app developer can make use of NDK and develop part

of the app’s functionality in the Native world. Figure 1 illustrates

an example app (named “IMEI-leaking”). It consists of two worlds,

1) Java world: An Activity component which loads a native library

“multiple_interactions” and imports two native methods propagate-
Data() and leakImei(); 2) Native world: Export two native functions

which leverage NDK libraries to read Java objects and invoke Java

methods.

Resolving native method call is different from resolving normal

Java calls. In order to find the native method callee, one has to

know which native library is loaded by the instance. From the

native library we need to know what native functions are exported,

then we can find the corresponding function as the native method

callee.

To track the data and control flow across language boundaries, a

static analyzer must understand the semantics of both languages, as

well as understanding the inter-language communication interface

and APIs.

As an example, the following sequence of events (as labeled in

Figure 1) can happen in reality:

(1) MainActivity invokes nativemethod propagateData() and passes
an object d which carries a sensitive data.

(2) Java_test_multiple_1interactions_MainActivity_propagateData()
receives the Java object data, gets str field (sensitive data) and

then invokes Java method toNativeAgain().
(3) toNativeAgain() at MainActivity receives data and passes it to

native method leakImei().
(4) Java_test_multiple_1interactions_MainActivity_leakImei() will

receive the imei and leaks to the log.

MainActivity.java

J1.
J2.
J3.
J4.
J5.
J6.
J7.
J8.
J9.
J10.
J11.
J12.
J13.
J14.
J15.
J16.
J17.
J18.
J19.
J20.
J21.
J22.
J23.
J24.
J25.
J26.
J27.
J28.

C1.
C2.
C3.
C4.
C5.
C6.
C7.
C8.
C9.
C10.
C11.

C12.
C13.
C14.
C15.
C16.
C17.

JNIEXPORT void JNICALL
Java_test_multiple_1interactions_MainActivity_propagateData(JNIEnv *env, jobject
thisObj, jobject data) {

jclass cd = env->GetObjectClass(data);
jfieldID fd = env->GetFieldID(cd, "str", "Ljava/lang/String;");
jobject imei = env->GetObjectField(data ,fd);
cd = env->FindClass(“test/multiple_interactions/MainActivity");
jmethodID gd = env->GetMethodID(cd, "toNativeAgain", "(Ljava/lang/String;)V");
env->CallVoidMethod(thisObj, gd, imei);
return;

} // ∆(propagateImei) = <(sink(arg1.str)@C15)>

JNIEXPORT void JNICALL
Java_test_multiple_1interactions_MainActivity_leakImei(JNIEnv *env, jobject thisObj,
jstring imei) {

LOGI("%s", getCharFromString(env, imei)); // leak
return;

} // ∆(leakImei) = <(sink(arg1)@C15)>

package test.multiple_interactions;
public class Data {

String str;
}
public class MainActivity extends Activity {

static {
System.loadLibrary("multiple_interactions"); //"libmultiple_interactions.so"

}
public static native void propagateData(Data d);
public static native void leakImei(String imei);
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
TelephonyManager tel =

(TelephonyManager) getSystemService(TELEPHONY_SERVICE);
String imei = tel.getDeviceId(); // source
Data d = new Data();
toNative(d, imei);

}
private void toNative(Data d, String imei) {

d.str = imei;
propagateData(d);

} // ∆(toNative) = <(arg1.str = arg2) (sink(arg1.str)@C15)>
public void toNativeAgain(String data) {

leakImei(data);
} // ∆(toNativeAgain) = <(sink(arg1)@C15)>

}

multiple_interactions.cpp libmultiple_interactions.socompile to

Figure 1: The IMEI-leaking App: The arrowed lines among the app components highlight some of the inter-language-
communication.

To track the data and control flow across language boundary, a

static analyzer needs to understand the bridge interface – JNI. For

example, when MainActivity invokes propagateData() at J23, the
static analyzer needs to know: 1) the libmultiple_interactions.so has
been loaded at J7; 2) the corresponding native function name is

Java_test_multiple_1interactions_MainActivity_propagateData via
applying naming convention. Furthermore, when native function

Java_test_multiple_1interactions_MainActivity_propagateData() in-
vokes MainActivity.toNativeAgain() at C9, the static analyzer needs
to model and analyze the reflection style JNI functions: 1) C4-C6
read str field from data and assign to imei; 2) C7 and C8 construct a

method identifier to Java method MainActivity.toNativeAgain(); 3)
C9 invokes MainActivity.toNativeAgain() with parameter imei.

After resolving the native method call at J23 and J26 and the

native reflection call at C9 we can track dataflow between the two

worlds. Then at C15 we will be able to say that the variable imei to
be written to the log is sensitive.

3 CORE CHALLENGES AND OUR SOLUTIONS
For both Java world and native world, there are already mature

static analysis tools for either one of them [12, 16, 25, 36, 37, 43, 44].

Instead of building a new analyzer from scratch, it is advantageous

to leverage these existing static analyzers to build an inter-language

dataflow analysis framework for Android. However, there are sev-

eral challenges in such an effort.

3.1 Challenge 1: Inter-language Analysis
Challenge

(1) Difference in intermediate data representation: Java data
flow analysis typically tracks points-to facts, whereas binary

dataflow analysis typically uses symbolic execution. Thus the
two analysis engines use different data representations in the

analysis process, making it hard to integrate. How to design a

unified dataflow representation for both analyses is a challenge.

(2) Efficiency: Both Java dataflow analysis and binary symbolic ex-

ecution are computationally expensive. The traditional dataflow

analysis requires propagating dataflow facts continuously over

the complete program’s control flow graph until a fixed point

is reached. For inter-language analysis, this means the analysis

process need to constantly switch between the Java and binary

analysis context. This further exacerbates analysis time.

To address above challenges, we adopt the Summary-based Bottom-
up Dataflow Analysis (SBDA) algorithm introduced in [19]. The

benefit of this method is that we only need to visit each method

exactly once to generate a unified heap manipulation summary for

both Java and native procedures, while still preserving a flow and

context-sensitive dataflow analysis result.

Figure 2 illustrates the workflow of SBDA. It takes the environ-
ment method as EP and generates a call graph G from it. From G
we apply a topological sort algorithm with the reverse order to

get a list of method MList, which guarantees the callee method

always comes before the caller method. If there is a cycle in the call

graph, the algorithm will break the cycle arbitrarily to make sure

the topological sort will always hold. For each methodMi in MList,
we apply a heap manipulation summary generation algorithm to

EP EP A B

D

C

Topological Sort and reverse.

D C B A EP

∆(D)

Generate heap
manipulation summary
left to right.

Generate Call Graph

∆(C) ∆(B)

∆(A) ∆(EP)

> > > >

Figure 2: SBDA workflow.

get summary ∆i . The callee method’s summary will propagate to

its caller methods until the EP is reached.

Heap Manipulation Summary. A summary ∆ for a method

m is presented by following language:

⟨∆⟩ ::= ‘<’ ⟨Rule⟩* ‘>’
⟨Rule⟩ ::= ‘(’ [⟨AssignRule⟩ | ⟨ActionRule⟩] ‘)’
⟨AssignRule⟩ ::= ⟨HeapLoc⟩ [‘=’ | ‘+=’ | ‘-’] ⟨RHS⟩
⟨ActionRule⟩ ::= ⟨Action⟩ ‘(’ ⟨RHS⟩ ‘)’ ‘@’ ⟨Loc⟩
⟨RHS⟩ ::= ⟨HeapLoc⟩ | ⟨Instance⟩
⟨Action⟩ ::= ‘~’ | ‘source’ | ‘sink’
⟨HeapLoc⟩ ::= ⟨HeapBase⟩ ⟨Index⟩
⟨HeapBase⟩ ::= ‘arg’ Digits | ‘ret’ | ID
⟨Index⟩ ::= ‘.’ ID | ‘[]’
⟨Instance⟩ ::= ID ‘@’ ⟨Loc⟩
⟨Loc⟩ ::= ID

∆ consists of a list ofRules . There are two types ofRule :AssiдnRule
and ActionRule . AssiдnRule defines what kind of data propagation

happened for the given HeapLoc at which Loc , whereasActionRule
defines what action should take for theHeapLoc .AssiдnRule allows
three operations: 1) ‘=’ strong update for a HeapLoc; 2) ‘+=’ weak
update for a HeapLoc; 3) ‘-’ kill facts from RHS . ActionRule has

three Actions: 1) ‘∼’ clear all heap for RHS ; 2) ‘source’ mark an

RHS as sensitive data; 3). ‘sink’ mark an RHS as a leaky point. RHS
consists of HeapLoc or Instance which represents right-hand-side

values. HeapLoc is used to represent the heap location which con-

sists of HeapBase and Index . There are three types of HeapBase a
callee method could use to create heap manipulating side-effect:

the heap of arguments, return value and global variables. Depend-

ing on the object type of HeapBase , field access or array access

can be used to present the Index . Instance represents the object in-
stance created at particular Loc . For example, the toNative()method

in Figure 1 generates a summary ∆(toNative) = ⟨(arд1.str =
arд2)(sink(arд1.str)@C15)⟩ where the arд1.str is aHeapLoc which
means the str field of the first argument, and sink(arд1.str)@C15
indicates the str field of first argument will be leaked at location

C15.
Let’s take Figure 3 as an example to walkthrough the heap

manipulation summary generation process and how we leverage

the summary ∆ to resolve the dataflow problem for the moti-

vating example. Start from method ep() we build a Call Graph,

∆(foo) = List<(arg1.str = arg2) (sink(arg1.str)@C15)>

∆(bar) = <(sink(arg1)@C15)>

class Data {
public String str;

}
public void ep() {

String imei = source();
Data d = new Data();
foo(d, imei);

}
Data foo(d, imei) {

d.str = imei;
n_1(d);

}
void bar(imei) {

n_2(imei)
}

J2.
J3.
J4.
J12.
J17.
J18.
J19.
J20.
J21.
J22.
J23.
J24.
J25.
J26.
J27.

arg1

arg1

ep

foo

bar

Call Graph

Resolve J19. foo(d, imei)

d

sink(source@J17)@C15

2

4

5

n_2

void n_1(env, obj, d) {
jstring i = env->
GetObjectField(d , “str”);

env->
CallVoidMethod(“bar”, i)

}
void n_2(env, obj, imei) {

sink(imei));
}

C1.
C6.

C9.

C11.
C12.
C15.
C17.

MainActivity.java

multiple_interactions.cpp

n_1

∆(n_2) = <(sink(arg1)@C15)>
arg1

1
sink@C15

∆(n_1) = <(sink(arg1.str)@C15)>
strarg1

3

arg2

imei source@J17

Data@J18

Figure 3: Heap Manipulation Summary of App “IMEI-
leaking”: An excerpt.1

and topological sort it in reverse order. We start generating the

summary ∆ from the leaf function n_2(). Native function n_2()
leaks the first argument thus we generate a summary ∆(n2) =
⟨(sink(arд1)@C15)⟩ and propagate it to Java method bar(). bar()
pass first argument to n_2() and the ∆(n2) is applied. Therefore,
we get summary ∆(bar) = ⟨(sink(arд1)@C15)⟩ and propagate it

to native function n_1(). n_1() read str field from first argument

d and invokes method bar(). Therefore, ∆(bar) is applied and we

get summary ∆(n1) = ⟨(sink(arд1.str)@C15)⟩. foo() puts second
argument imei into str field of first argument d, and invokes native

function n_1(). We apply ∆(n1) and then get ∆(f oo) = ⟨(arд1.str =
arд2)(sink(arд1.str)@C15)⟩. Java method ep() assigns a sensitive
data to variable imei at J17 and creates a Data instance to d at J18.
J19 of Java method ep() invokes method foo(). ∆(f oo) tells us str
field of variable d gets data in variable imei which is sensitive, and

this str field of variable d will flow to a leak point at C15. Therefore,
we capture the data leakage problem.

3.2 Challenge 2: Resolving Native Method Calls
JNI allows two ways to resolve a native method call to a native

function:

(1) Default: Follow the naming convention in JNI specification [8]

to generate corresponding native function name. For example,

as Figure 1 illustrated, the corresponding native function name

for native method MainActivity.propagateData() is Java_test_-
multiple_1interactions_MainActivity_propagateData.

(2) Dynamic register: JNI allows developer to dynamically regis-

ter native method signature to native function mapping.

To assist dataflow analysis engine to find native method callee,

we propose a Native Method Mapping data structure. Native Method
Mapping is a map where the key is the native method signature

and the value is the corresponding native function name and the

containing so file.

1
We shortened the method/function names for better presentation. First two arguments

of native functions are not counted in the summary as env is not presented in Java

method and obj is “this”.

Algorithm 1 Resolve loaded library for class C
Input: all classes’ IR of A.
Output: Loaded library for class C, libNameSet
1: procedure resolveLibNameSet(A, C)
2: l ibNameSet ← empty set
3: loadSiдs ← Set(“System.load()”, “System.loadLibrary()”, “Runtime.load()”, “Run-

time.loadLibrary()”)
4: for all class ∈ A.getAllReachableClasses(C) do
5: clinit ← class .getStaticInitializer();
6: for all invoke ∈ clinit .getInvokeStatements() do
7: if invoke .siдnature ∈ loadSiдs then
8: l ibNameSet ← l ibNameSet :: invoke .getValueForParameter(1)
9: return l ibNameSet ;

Algorithm 2 Generate Native Method Mapping of APK A
Input: All classes’ IR of A.
Output: A’s native method to so file map, n_map
1: procedure GenNativeMethodMap(A)
2: n_map ← empty map
3: for all class ∈ A.getClasses() do
4: nativeMethods ← class .getNativeMethods();
5: if nativeMethods , empty then
6: l ibnames ←resolveLibNameSet(A, class) ▷ Invoke Algorithm 1

7: for all name ∈ l ibnames do
8: nLib ← A.loadNativeLibrary(name);
9: for allmethod ∈ nativeMethods do
10: f uncName ←method .toJNIName();
11: if f uncName ∈ nLib .getFunctionNames() then
12: n_map(method) ← (f uncName, name);
13: else
14: dynamicMap ← nLib .getDynamicRegisterFunctions();
15: ifmethod ∈ dynamicMap then
16: n_map(method) ← (dynamicMap(method), name);
17: return n_map ;

Algorithm 2 shows the pseudocode for generating Native Method
Mapping n_map of a given APK A. We first visit each class in A. If
class defined native methods, we then follow Algorithm 1 to find

the possible native function containing so files. For each native

method in the class, we generate its native function name funcName
following the naming convention. We then load each so file, nLib,
and see if the funcName exists in nLib. If yes, we add it into the

n_map. If not, we continue checking the dynamically registered

function list for nLib and check if the method is dynamically reg-

istered. If yes, we add it into the n_map. However, to obtain the

dynamically registered functions for nLib is a non-trivial work. We

took following approach to compute.

Dynamic Function Register Resolution. As illustrated in Fig-

ure 4, JNI allows register dynamic function mapping by imple-

menting the JNI_OnLoad() method. The JNINativeMethod structure
contains themapping information between the nativemethod name,

signature and the corresponding native function pointer. C5-C8 de-

fines an JNINativeMethod array gMethods to indicate the mapping

for native methods foo() and bar(), then C16 invokes RegisterNa-
tives() with gMethods to register.

Dynamic function register resolution procedures:
(1) Dynamic register begins at JNI_OnLoad() method, whose first

argument is JavaVM *vm. Therefore, we first construct a fake

pointer to the JNIInvokeInterface structure, which has been

modeled, and attach the initialized pointer to the first argument

(register R0) of JNI_OnLoad().
(2) We do the symbolic execution from the JNI_OnLoad(). In this

situation, we need to get the JNINativeInterface to make JNI

calls. As Figure 4 illustrated, JNI_OnLoad() method will first

declare an uninitialized JNIEnv *env variable. Then it will call

C1.
C2.
C3.
C4.
C5.

C5.
C6.
C7.
C8.

C9.
C10.
C11.
C12.
C13.
C14.
C15.
C16.
C17.
C18.
C19.
C20.

static JNINativeMethod gMethods[] = {
{"foo", "(Ljava/lang/String;)V", (void *) native_foo},
{"bar", "(ILjava/lang/String;)V", (void *) native_bar},

};

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *vm, void *reserved) {
JNIEnv *env = NULL;

if (vm->GetEnv((void **) &env, JNI_VERSION_1_4) != JNI_OK) {
return -1;

}
…
if (env->RegisterNatives(clazz, gMethods, numMethods) < 0) {

return -1;
}
…

}

typedef struct {
const char* name;
const char* signature;
void* fnPtr;

} JNINativeMethod;

jni.h

main.cpp

Figure 4: JNINativeMethod Structure

GetEnv() function from vm to initialize the env variable. We

create a SimProcedure(GetEnv) to simulate this behavior. We

construct a fake JNINativeInterface pointer outside the GetEnv()
function and then attach to it. Then the env variable constructed
by JNI_OnLoad() can be assigned and continue to propagate.

(3) We hook SimProcedure(RegisterNatives) to JNINativeInterface’s
function pointers table. When the symbolic execution engine

executes SimProcedure(RegisterNatives), we can get the memory

address of the gMethods array. Because each element is accessi-

ble at a fixed offset through the JNINativeMethod structure. We

can resolve each element value of the gMethods based on the

address and the structure of JNINativeMethod.
(4) Each JNINativeMethod contains three elements, native method

name, native method signature, native function address. We

match the native method information from SBDA and find its

corresponding native function address. Then we can begin

Native Function Summary Builder from that address.

3.3 Challenge 3: Leveraging Existing Binary
Analyzer for Dataflow Analysis

There are a number of existing binary analysis tools [16, 36, 37].

We use angr [36] for our work. angr is a general binary analysis

platformwhich uses symbolic execution technique to recover precise
CFG (called CFGAccurate) in binary and allows user to perform

annotation-based analysis. However, angr is not aware of NDK

library, JNI function and Java object/method. Therefore, it cannot

be directly used to track dataflow in Android binaries.

To do NDK/JNI-aware dataflow analysis for Android binary,

we leverages angr’s symbolic execution engine and implements an

Annotation-based Dataflow Analyzer .
Annotation-based Dataflow Analysis (ADA) leverages angr’s An-

notation and SimProcedure features, and is NDK/JNI-aware. Anno-
tation is a customizable interface which angr uses to allow users to

define what kind of data needs to be carried in the state of symbolic
execution process and what’s the propagation rule. SimProcedure
allows users to replace library function calls with a fake function

that models the original library function’s effect on the symbolic
execution state.

Custom Annotations. We design two custom Annotations to
assist NDK/JNI-aware dataflow analysis:

(1) SummaryAnnotation: Native code uses JNI functions to cre-

ate/inspect/update Java objects, invoke Java methods, catch and

throw exceptions, etc. What’s more, native code has the capa-

bility to conduct inter-component communication (ICC) with

the aid of JNI functions. Therefore, NativeDroid implements

SummaryAnnotation to capture data related to Java operations

in native code.

(2) TaintAnnotation: It annotates tainted data with information,

such as, taint type (source or sink), taint label, taint locations,

etc. There are two kinds of source and sink APIs in native world:

1) Linux system calls; 2) JNI functions which invokes Java world

methods. We annotate all of them to capture all the possible

taint information.

0 reserved0

... ...

34 *CallObjectMethod

… …

104 *SetObjectField

… …

169 *GetStringUTFChars

… …

JNIEnv * 0 reserved0

1 reserved1

2 reserved2

3 *DestroyJavaVM

4 *AttachCurrentThread

5 *DetachCurrentThread

6 *GetEnv

7 *AttachCurrentThreadAsDaemon

JavaVM *

JNINativeInterface JNIInvokeInterface

Figure 5: JNINativeInterface and JNIInvokeInterface struc-
tures

JNI Function Model. There are two key data structures in JNI,

JNINativeInterface [4] and JNIInvokeInterface [2]. As Figure 5 illus-
trated, both of them contains a list of function pointers. JNIEnv *
and JavaVM * are the pointers which points to the head of each

table.

(1) JNINativeInterface provides JNI functions to create/inspect/up-

date Java objects, invoke Java methods, catch and throw excep-

tions, query Java class information, etc. For example, CallOb-
jectMethod function is used to call a Java instance method from

a native method; SetObjectField sets the value of an instance

field of an object. As native code of Figure 1 shows, each native

function receives an JNIEnv * as its first argument, and can

invoke JNI functions based on it.

(2) JNIInvokeInterface provides JNI functions to create/destroy Java
VM, and allocate/discover JNIEnv. EP of native Activity does

not have JNIEnv * parameter. Therefore, developer need to

use GetEnv() function to discover the thread’s JNIEnv *. If the
thread has not been created, developer needs to use AttachCur-
rentThread() or AttachCurrentAsDaemon() function to attach a

thread and allocate JNINativeInterface.
Understanding the semantics of the aforementioned JNI func-

tions are essential for ADA to do NDK/JNI-aware analysis. There-

fore, we need to model each of the JNI functions in JNINativeIn-
terface and JNIInvokeInterface using the SimProcedure technique
provided by angr . However, the invocation instructions for JNI

functions are stripped in released version of Android applications,

and the JNI function calls happen through indirect jump in the

function pointer table of those two data structures. Therefore, we

have to create a fake data structures to imitate JNINativeInterface
and JNIInvokeInterface, and set the corresponding function pointers

at each offset to address of our modeled SimProcedures.

… …

169 *SimProcedure(GetStringUTFChars)

… …

JNIEnv *

Fake JNINativeInterface

SimProcedure(GetStringUTFChars) {
TaintAnnotation: arg1 à ret;

}

Figure 6: GetStringUTFChars function model.

C/C++ Source Code

Assembly

C1.
C2.
C3.
C4.
C5.
C6.

A1.
A2.
A3.
A4.
A5.
A6.
A7.
A8.
A9.
A10.
A11.
A12.
A13.
A14.
A15.
A16.

const char *getCharFromString(JNIEnv *env,
jstring string) {

if (string == NULL)
return NULL;

return env->GetStringUTFChars(string, 0);
}

.text:00000610 ; getCharFromString(_JNIEnv *, _jstring *)

.text:00000610 PUSH {R7,LR}

.text:00000612 ADD R7, SP, #0

.text:00000614 MOVS R2, #0

.text:00000616 CMP R1, #0

.text:00000618 BEQ loc_628

.text:0000061A MOVS R2, #0x2A4

.text:0000061E LDR R3, [R0]

.text:00000620 LDR R3, [R3,R2]

.text:00000622 MOVS R2, #0

.text:00000624 BLX R3

.text:00000626 MOVS R2, R0

.text:00000628 loc_628

.text:00000628 MOVS R0, R2

.text:0000062A POP {R7,PC}

.text:0000062A ; End of function getCharFromString(_JNIEnv *,_jstring *)

R0 = env
R2 = 0x2A4
R3 = R0 = env
R3 = R3 + R2 = env + 0x2A4 = address of GetStringUTFChars

L1.
L2.
L3.
L4.

Concise Process

Figure 7: getCharFromString function source code and as-
sembly

Figure 6 illustrates our model of JNINativeInterface and its Sim-
Procedure table. The model of GetStringUTFChars indicates that the
TaintAnnotation of the first argument is passed to return value.

For example, Figure 7 shows a native function getCharFromString
that receives an JNIEnv *env as its first argument at C1. It invokes
GetStringUTFChars() function from env at C5. As Figure 6 illus-

trated, GetStringUTFChars is the 170th element of JNINativeInter-
face. Therefore, its offset to JNIEnv * is 169 ∗ 4 = 676 = 0x2A4.
As the calling convention prescribed, the first argument of each

function is stored in R0 register. We illustrate the register value

update process in the Concise Process of Figure 7 which simpli-

fies the procedures showed in Assembly code. First, R0 register is
assigned to the value of env (a pointer) parameter at L1. Second,
R2 is assigned to 0x2A4 at L2, which is the offset of GetStringUT-
FChars from JNIEnv *. Then, R3 is updated with the value of R0
at L3, which equals the env parameter. Finally, add R2 to R3 to

get the address of GetStringUTFChars. BLX R3 instruction at A11
will call the GetStringUTFChars. When ADA executes A11, it will
call SimProcedure(GetStringUTFChars), which will propagate any

TaintAnnotations from first argument to the return value.

Java Method Summary. As showed in Figure 1, C9 invokes

CallVoidMethod() function which will make a Java method call

and callee is MainActivity.toNativeAgain(). SBDA already gener-

ated a method summary for MainActivity.toNativeAgain(), which
is ∆(toNativeAдain) = ⟨(sink(arд1)@C15)⟩. The function model

SimProcedure(CallVoidMethod) takes ∆(toNativeAдain) and oper-

ates on its arguments to properly mark TaintAnnotations. For this
case, the data.str will be marked as leak.

Inter-ComponentCommunication (ICC)Resolution. Native
code can make inter-component communication (ICC) by invok-

ing Java ICC APIs. Amandroid has a comprehensive model for

ICC [43, 44], thus we apply the same model in function model Sim-
Procedure(CallVoidMethod) to capture the possible ICC in native

code.

3.4 Challenge 4: Handling Native Activity
Android NDK allows the developer to develop Activity in pure

native language since Android 2.3 [1]. There are two ways to im-

plement a native Activity [7].

(1) native_activity.h: In this way, the app needs to include native_-
activity.h header to implement a native activity. It contains the

callback interface and data structures that are required to create

a native activity. The default entry point is ANativeActivity_-
onCreate function. NDK allows developers to use a customized

function name by specifying in Manifest.

(2) android_native_app_glue.h:With include android_native_-
app_glue.h, an app can utilize android_main as entry point

function to implement a native Activity.

Algorithm 3 Collect Native Activity Info of APK A
Input: Manifest file and all classes’ IR of A.
Output: A’s native Activity information, native_activities
1: procedure collectNativeActivityInfo(A)
2: native_activit ies ← empty set
3: manif est ← A.getManifest()
4: for all compTaд ∈ manif est .getComponentTags() do
5: compName ← compTaд.getAttribute(“android:name”)
6: compClass ← A.getClass(compName)
7: if compClass .isChildOfIncluding(“android.app.NativeActivity”) then
8: map ← compTaд.getMetaDataMap()
9: l ibs ← empty set
10: l ibName ←map(“android.app.lib_name”)
11: if l ibName = null then
12: l ibs ← resolveLibNameSet(A, compClass) ▷ Invoke Algorithm 1

13: else
14: l ibs ← l ibs :: l ibName
15: f uncName ←map(“android.app.func_name”)
16: if f uncName = null then
17: if l ibs = empty then
18: l ibs ← A.getAllNativeLibs()
19: for all l ib ∈ l ibs do
20: if l ib .hasSymbol(“android_main”) then
21: l ibName ← l ib
22: f uncName ← “android_main”
23: else if l ib .hasSymbol(“ANativeActivity_onCreate”) then
24: l ibName ← l ib
25: f uncName ← “ANativeActivity_onCreate”
26: native_activit ies ← (compName, l ibName, f uncName)
27: return native_activit ies ;

There are three important information needed for resolving a

native Activity: name, containing so file and entry function name.

Algorithm 3 shows the pseudocode for collecting these for all native

Activities from an appA. We first iterate each component compClass
in the AndroidManifest.xml and find the native Activities by check

whether compClass is or is the child of “android.app.NativeActivity”.
If compClass is a native Activity, we then read its metadata to

obtain the libName. If did not get libName, we then evaluate comp-
Class’s static initializer <clinit> to find out the argument value for

load library method calls, System.load(), System.loadLibrary(), Run-
time.load(), and Runtime.loadLibrary(). Then assign it to libName.
We read the “android.app.func_name” from compClass’s metadata

to obtain the funcName. If “android.app.func_name” does not exist,
then the default entry function name is used. We then check if the

default name is “android_main” (the android_native_app_glue.h
case) or “ANativeActivity_onCreate” (the native_activity.h case).

static void OnStart(ANativeActivity *activity) {
JNIEnv* env = activity->env;
activity->vm->AttachCurrentThread(&env, 0);
jobject context = activity->clazz;
jstring imei = getImei(env, context);
LOGD("Device ID: %s",

getCharFromString(env, imei));
}

static void OnResume(ANativeActivity *activity) {…}

void ANativeActivity_onCreate(ANativeActivity *activity, void *savedState, size_t savedStateSize) {
activity->callbacks->onStart = OnStart;
activity->callbacks->onResume = OnResume;
…

}

0
ANativeActivity

Callbacks*
callbacks

1 JavaVM* vm

2 JNIEnv* env

… …

ANativeActivity

0 *onStart

1 *onResume
… …

ANativeActivity
Callbacks

C1.
C2.
C3.
C4.
C5.
C6.

C7.

C8.

C9.
C10.
C11.
C12.
C13.

Figure 8: native_activity.h example

native_activity.h. As Figure 8 illustrated, the default EP of the

native Activity is ANativeActivity_onCreate (NDK also allows devel-

opers to use a custom EP). ANativeActivity * is the first parameter

whose first structuremember isANativeActivityCallbacks *callbacks.
ANativeActivityCallbacks structure contains the callback functions

which will be executed in the native activity lifecycle. However,

when we conduct the ADA from EP , the symbolic execution engine

cannot execute those callbacks, as there are no explicit calls.

To comprehensively model this type of native Activity we take a

two fold approach:

(1) Resolve callback function address:As illustrated in Figure 8,
the ANativeActivity_onCreate function assigns the callbacks to

corresponding index of ANativeActivityCallbacks structure. We

apply symbolic execution on this EP to get addresses of those

callbacks and its index in ANativeActivityCallbacks structure.
We first construct a fake ANativeActivityCallbacks structure.
We then construct a fake ANativeActivity structure and map

the fake ANativeActivityCallbacks structure’s pointer to the

ANativeActivity structure. Finally, we assign the pointer to the

fake ANativeActivity structure to the first argument (R0 regis-
ter) of ANativeActivity_onCreate. We do the under-constrained

symbolic execution from ANativeActivity_onCreate function.
After the symbolic execution has finished, the elements of ANa-
tiveActivityCallbacks will be assigned real addresses of those

callbacks.

(2) Explicitly invoke callback functions: We hook each call-

back function to ANativeActivity_onCreate and apply ADA from

ANativeActivity_onCreate as the EP . One challenge here is when
native Activity invokes JNI functions. As illustrated in Figure 8,

there are no JNIEnv * in the EP , and the ANativeActivity struc-

ture’s JNIEnv * is uninitialized. The developers need to invoke

AttachCurrentThread on JavaVM * to assign env like in C2 and

C3. In ADA, we apply SimProcedure(AttachCurrentThread) to
assign env element. After the env element is assigned, the ADA
will be able to correctly resolve JNI functions.

int32_t handle_input(struct android_app* app, AInputEvent* event) {…}

void handle_cmd(struct android_app* app, int32_t cmd) {…}

void android_main(struct android_app* state) {
…
state->onAppCmd = handle_cmd;
state->onInputEvent = handle_input;

// Read all pending events.
while (1) {…}

}

0 …

1 void (*onAppCmd)

2 int32_t (*onInputEvent)

3 ANativeActivity* activity

… …

android_app

C1.

C2.

C3.
C4.
C5.
C6.
C7.
C8.
C9.

Figure 9: android_native_app_glue.h example

android_native_app_glue.h. As illustrated in Figure 9, android_-
main is the EP , and the only argument is the android_app * state.
There are two important callback function pointers in android_-
app structure, onAppCmd and onInputEvent. onAppCmd is used for

activity lifecycle events and onInputEvent is used for input events.

Developers need provide their own processing functions to the two

callbacks. These callbacks will be triggered when an activity and

an input event occur, respectively.

To comprehensively model this native Activity type we apply

similar approach as we used to resolve ANativeActivity_onCreate.
Firstly,We run symbolic execution from android_main to resolve the
two callbacks value. Then, we hook the two callbacks to android_-
main function and run ADA.

4 THE JN-SAF FRAMEWORK
JN-SAF consists of JavaDroid,NativeDroid and JNI Bridge. JavaDroid
is responsible for Dalvik-bytecode (Java world) analysis. It is im-

plemented on top of Amandroid [43, 44], which provides various

static analysis modules to perform custom analysis of Android apps.

However, Amandroid does not readily have inter-language analysis

capability. Thus, we have to implement the Summary-based Bottom-
up Dataflow Analysis (SBDA) algorithm as described in Section 3.1.

NativeDroid is responsible for binary code (native world) analysis,

which is built on top of angr [36]. NativeDroid implements the ADA
algorithm described in Section 3.3. JNI Bridge is the middle layer

that assists the control and data communication between JavaDroid
(implemented in Scala

2
) and NativeDroid (implemented in Python).

JNI Bridge leverages jpy [5], a bi-directional Java-Python bridge to

enable JavaDroid and NativeDroid transfer control and data.

Figure 10 illustrates the pipeline of JN-SAF which consists of

three major steps: 1) APK Preprocess: collects useful information

from an app; 2) Environment Model: generates environment model

for both Java and native components; 3) Summary-based Bottom-
up Dataflow Analysis (SBDA): computes information flow for each

Android component in a native-aware fashion and apply inter-

component analysis to evaluate security problems.

2
Scala is a JVM-based language.

4.1 APK Preprocess
JN-SAF takes an APK as the analysis input. It decompiles the

APK into three parts, dex files, Manifest&Resource files and so files.
JavaDroid leverages the DEX2IR and Resources Parser components

in Amandroid to decompile Dalvik bytecode into Intermediate Rep-
resentation (IR) language Pilar [44] and collect component infor-

mation. NativeDroid uses pyvex from angr to translate binary into

VEX IR [35].

The Native Info Analyzer receives information from DEX2IR and

Resources Parser to compute native world related information:

(1) Generate Native Method Mapping following Algorithm 2 de-

scribed in Section 3.2.

(2) Collect Native Activity Info following Algorithm 3 described in

Section 3.4.

4.2 Environment Model
Android is an event-based system, and as such no single method

can be used as EP for the dataflow analysis. To capture all lifecycle

and event control-/data-flow of an Android Java component, and to

generate EP for dataflow analysis, APK Preprocessor reuses Environ-
ment Builder from Amandroid to build environment model for each

Android Java component as described in [43, 44], and generates an

Environment Method as the EP for each Java component.

We implement Native Component Environment Builder following
the solution described in Section 3.4 to generate an Environment
Function as the EP for each native Activity component.

The Environment Method/Function explicitly invokes the even-

t/lifecycle callbacks as the Android runtime would.

4.3 Summary-based Bottom-up Dataflow
Analysis (SBDA)

JN-SAF implements the Summary-based Bottom-up Dataflow Anal-
ysis (SBDA) algorithm by following the techniques described in

Section 3.1. It consists of the following components.

Call Graph Builder. It receives the environment method/func-
tion from Environment Model and uses it as the EP to compute a

native-aware call graph. Unlike traditional Java call graph build-

ing algorithm, our call graph will not stop at native method calls.

Instead, it will evaluate the corresponding native function to ad-

dress possible reflection call from native to Java and add those call

target as callee of this native method. The native reflection style

call is resolved by following the JNI function model described in

Section 3.3.

Bottom-up Summary Propagator. It receives the call graph

CG from Call Graph Builder and applies a topological sort with the

reverse order to get a list of method/function MList. It iterates the
MList to send the work order to corresponding Method/Function
Summary Builder to compute summary ∆, and propagate to their

callers.

Java Method Summary Builder. Amandroid provides a flow

and context-sensitive monotonic dataflow analysis engine [44].

We can leverage this engine to compute the summary for a given

method. However, Amandroid is not aware of our summary repre-

sentation and it always does a inter-procedural analysis. We thus

Summary-based Bottom-Up Dataflow Analysis (SBDA)Environment ModelAPK PreprocessAPK

.so
.so

.so

.dex
.dex

.dex

Manifes
t & ResManifes

t & ResManifest
& Res

Resources
Parser

Java
Component
Environment

Builder

DEX2IR
IR_Pilar

Component Info

Native Info
Analyzer

pyvex

JNI Bridge

Native
Component
Environment

Builder

Java Method
Summary Builder

Native Function
Summary Builder

Native
Method
Mapping

Inter-
component

AnalyzerCall
Graph
Builder

Env Bottom-up
Summary

Propagator

CG

Method Info

Function Info

Method ∆

Function ∆

Dataflow
Analysis
Result

IR_VEX

Native
Activity
Info

Analysis
Report

JavaDroid

NativeDroid

Figure 10: The JN-SAF pipeline.

significantly modified its dataflow analysis engine. When the en-

gine reaches a method call, it will not flow the points-to facts into

the callee. Instead, it will obtain the summary ∆(callee) and apply

such summary on current points-to facts to imitate the heap manip-

ulation behaviors. When dataflow analysis finishes, we collect the

heap manipulation behavior of the current method and generate a

summary ∆(method).

Native Function Summary Builder. Upon receiving a work

order with native method signature and its containing so file, the
Native Function Summary Builder first identifies the binary address

for the corresponding native function of the native method. Then

it applies ADA (as described in Section 3.3) to generate ∆ starting

from such EP as follows.

(1) Add SummaryAnnotation to each argument including argument

index and type information, because from EP’s perspective all
mutable arguments are considered as HeapBase .

(2) Add SimProcedure to all JNI functionswhichmight create/delete/-

manipulate the heap of Java objects.WhenADA evaluates, those

SimProcedures will properly update and propagate SummaryAn-
notation. As an example, native code can construct Java String
with the aid of JNI function NewString() or NewStringUTF(), JNI
function SetObjectField() will set data to a Java object.

(3) When ADA encounters any method/function invocation, it will

check whether it is a source or sink API. If so ADA will add

TaintAnnotation to proper HeapLocs . For method invocation,

we will also check with SBDA to obtain its ∆ and apply it on

the arguments SummaryAnnotations.
(4) When ADA is over, we extract the SummaryAnnotation together

with TaintAnnotation related to each arguments and return node

(if the JNI function returns a Java object) to build the summary.

We take Java_test_multiple_1interactions_MainActivity_propagat-
eData() function at Figure 1 as an example to walkthrough the na-

tive function ∆ building process. Java_test_multiple_1interactions_-
MainActivity_propagateData() function receives one argument data.
We assign SummaryAnnotation(arg1, test.multiple_interactions.Data)
to data and SummaryAnnotation(arg1.str, ‘java.lang.String’) to data.str.
C6 invokes GetObjectField() to read str field of data to variable

imei. SimProcedure(GetObjectField) get SummaryAnnotations from

data.str and propagate it to variable imei. C9 invokes Java method

toNativeAgain() and pass imei as the first argument. SimProce-
dure(CallVoidMethod) obtain ∆(toNativeAдain) from SBDA, and
apply on SummaryAnnotations of imei, we then get TaintAnnota-
tion(sink(arg1.str), ‘C15’). After finish running ADA, we collect the
SummaryAnnotations and TaintAnnotations related to each argu-

ment (there are no return value in this case). Finally, we check the

heap changes of eachHeapBase and taint informations to construct

the summary ∆(propaдateImei) = ⟨(sink(arд1.str)@C15)⟩.

Inter-component Analyzer. Resolving Inter-component com-

munication (ICC) is essential for any Android static analysis tool.

JN-SAF ’s ICC resolution is empowered by Amandroid’s Summary
Table (ST) based ICC resolution model [44]. The Inter-component
Analyzer collects ICC information from all Java components and

native Activity components. Then, it computes ST for each compo-

nent and uses Amandroid’s Component-based Analysis to address
ICC dataflow.

5 EVALUATION
We evaluated JN-SAF extensively on benchmark and real world

apps. Our dataset includes: (1) NativeFlowBench created by us

which consists of 22 hand-crafted benchmark apps, each testing

one perspective of the inter-language challenges; (2) 100,000 ran-

domly selected popular apps from AndroZoo [11] (ZOO); (3) 24,553

malware apps from the AMD dataset [42] (AMD).

We perform experiments to answer the following research ques-

tions (RQ):

RQ1: What is the statistics of native library usage in real

world Android apps?

RQ2: How does the running time of JN-SAF scale?

RQ3: How does JN-SAF perform on Benchmark apps?

RQ4: Is JN-SAF capable of discovering crucial security issues
to aid in real-world app vetting?

We ran our experiments on a machine with 2.20 GHz, 48-core

Xeon, and 256 GB RAM.

5.1 RQ1: What is the statistics of native library
usage in real world Android apps?

Table 1: Native library statistics for datasets.

(a) Native library usage.

ZOO AMD ZOO AMD

Total App
a

99,910 24,384

Has Native
b

39,661 5,365 / Total App 39.7% 22.0%

Has .so File 35,705 5,164 / Has Native 90.0% 96.2%

Has Native Method 32,576 3,867 / Has Native 82.1% 72.1%

Has Native Activity 583 29 / Has Native 1.5% 0.5%

Total Native Method 4,232,699 112,000 / Has Native Method 106.7 29.0

Pass Data 3,661,881 90,212 / Total Native Method 86.5% 80.5%

Pass Object 1,496,911 45,981 / Pass Data 35.4% 51.0%

a
We failed to analyze a few apps that use advanced obfuscation.

b
Has Native = Has .so File ∪ Has Native Method ∪ Has Native Activity.

(b) Architecture.

ZOO AMD ZOO AMD

Total .so File 235,616 16,116

ARM 162,356 13,792 / Total .so File 69.0% 85.6%

ARM 64 10,111 2 / Total .so File 4.3% 0.01%

X86 37,745 1,149 / Total .so File 16.0% 7.1%

X86 64 8,511 2 / Total .so File 3.6% 0.01%

MIPS 9,658 770 / Total .so File 4.1% 4.8%

MIPS 64 2,477 2 / Total .so File 1.1% 0.01%

Other 4,758 399 / Total .so File 2.0% 2.5%

(c) Reflection call.

ZOO AMD ZOO AMD

Total Reflection Call 7,664
a

33,497

Resolved Call 4,744 29,336 / Total Reflection Call 61.9% 87.6%

Library API Call 2,555 24,249 / Resolved Call 53.9% 82.7%

App Method Call 2,189 5,087 / Resolved Call 46.1% 17.3%

a
Due to time constraint we only finished analyzing 37,781 native functions from ZOO.

We collect native library usage on both ZOO and AMD. As Ta-
ble 1a indicates, the overall native library usage is reasonably high

no matter in benign dataset or malware dataset. ZOO has much

higher native library usage than AMD which means there are many

benign use cases for native libraries, so native library existence is

not a good indicator for detecting Android malware. We really need

to dig into the native library and understand its behavior. We also

found cases where an app has native methods but no .so files. This

means the .so file is probably downloaded at runtime (in which

case no static analyzer will be able to identify). We found native

Activity usage in both ZOO and AMD, which shows the necessity

of handle such case.

Table 1b lists the usage of different architectures. Overall, 32 bit

architecture has much higher percentage over 64 bit architecture.

ARM is the most popular architecture for Android. Not surprisingly

most of the binaries are in ARM architecture.

Native library can invoke Java method through reflection style

function calls. We conducted an experiment to study the capability

of NativeDroid to resolve such calls, and the results are shown in

Table 1c. We also studied the distribution of those reflection call

targets, and found that the majority of the reflection calls (espe-

cially from AMD) are targeted to library APIs as oppose to App

methods. We experience poor performance on ZOO reflection call

resolving due to the larger code base and complex logic in market

apps as opposed to malware apps. From the obtained reflection

call list, we see many interesting library APIs being called, such

as SmsManager.sendDataMessage(), ClassLoader.loadClass(), which
might raise red flags.

5.2 RQ2: How does the running time of JN-SAF
scale?

Figure 11: Time to run SBDA.

(a) Function Summary Builder (b) Native Activity Analysis

Figure 12: Native code analysis performance.

SBDA is the core engine and the most computation-intensive step

in JN-SAF . Figure 11 presents the time taken to construct SBDA
for 10,000 randomly picked real-world app components. These

components reach 144 methods on average. The average running

time for computing the SBDA for each component is 42.288 seconds;

the minimum is 0.001 seconds whereas the maximum is 86 minutes.

We constructed a separate experiment focused on the running

time for native code analysis. Figure 12a illustrates the time taken to

build function summary for 2,000 randomly picked real-world app

native functions. These native functions reach 4,417 instructions on

average. The average running time is 88.982 seconds; the minimum

is 0.107 seconds whereas the maximum is 136 minutes. Figure 12b

illustrates the time taken to construct native Activity analysis for

all 579 native activities (failed to analyze 33 due to path explosion

problem). These native activities reach 41,285 instructions on aver-

age. The average running time is 570.513 seconds; the minimum is

0.247 seconds whereas the maximum is 438 minutes.

5.3 RQ3: How does JN-SAF perform on
Benchmark apps?

For evaluation purpose, we designed NativeFlowBench since there

is no existing benchmark for evaluating inter-language dataflow

analysis capability of Android static analysis tools.NativeFlowBench
contains a set of hand-crafted apps designed to test specific anal-

ysis features. Since those apps are hand-crafted, the ground truth

is known and we can compute metrics like precision and recall.

Table 2: Results on NativeFlowBench.

App Name JN-SAF Amandroid
FlowDroid

DroidSafe
IccTA

Part A: Inter-language Dataflow

native_source O X X X

native_nosource

native_source_clean * *

native_leak O X X X

native_leak_dynamic_register O X X X

native_dynamic_register_multiple O X X X

native_noleak

native_noleak_array *

native_method_overloading

native_multiple_interactions O X X X

native_multiple_libraries O X X X

native_complexdata O X X X

native_complexdata_stringop *

native_heap_modify O X X X

native_set_field_from_native OO XX XX XX

native_set_field_from_arg OO XX XX XX

native_set_field_from_arg_field OO XX XX XX

Part B: Native Activity Resolve

native_pure O X X X

native_pure_direct O X X X

native_pure_direct_customized O X X X

Part C: Inter-component Communication

icc_javatonative O X X X

icc_nativetojava O X X X

Sum, Precision and Recall

O, higher is better 19 0 0 0

*, lower is better 2 1 1 0

X, lower is better 0 19 19 19

Precision p = O/(O + *) 90.5% 0.0% 0.0% N/A

Recall r = O/(O + X) 100% 0.0% 0.0% 0.0%

F-measure 2pr/(p + r) 95.0% N/A N/A N/A

O = True Positive, * = False Positive, X = False Negative.

We applied IccTA for handle part C: Inter-component Communication.

NativeFlowBench contains 22 apps categorized in three parts: Part

A focuses on inter-language dataflow analysis challenges: native

source and sink finding, native method to native function resolving,

JNI library function modeling, native dataflow analysis with Java

objects, etc. Part B focuses on the native Activity resolving. Part C

focuses on inter-component communication between Java and na-

tive components. We will make NativeFlowBench publicly available.

The apps in these testsuites are not crafted to favor a particular

tool. They present common scenarios one will find when reasoning

about the relevant security issues.

We compare the effectiveness of JN-SAF with all other major

Android static analysis tools: Amandroid [43, 44], FlowDroid [12],

IccTA [23], DroidSafe [21]. We run each tool against each of the

benchmark apps to check if the tool can report the correct data

leak paths, and the detailed comparison is reported in Table 2. The

results are shown in terms of True Positive (O), False Positive (*)

and False Negative (X), if any. If an app has more than one leakage

path, then the result is shown for each of them. Not surprisingly,

JN-SAF outperforms all other tools as none of the existing An-

droid static analysis tools have inter-language analysis capability.

DroidSafe is outdated and failed to analyze any of the benchmark

apps. Amandroid and FlowDroid both identified one false path at

native_source_clean. This is caused by their conservative model for

native method calls – if one of the argument is tainted all other

arguments will also be considered as tainted. IccTA failed to handle

the inter-component communication cases due to the lack of native

code resolution. JN-SAF has false alarm on native_noleak_array
because JN-SAF cannot distinguish different index of an Java array.

JN-SAF has false alarm on native_complexdata_stringop because

JN-SAF does not do precise string analysis.

5.4 RQ4: Is JN-SAF capable of discovering
crucial security issues to aid in real-world
app vetting?

We evaluated JN-SAF on AMD [42] dataset to examine its capacity

of real-world app security vetting. AMD is an Android malware

ground truth dataset which contains 24,553 samples categorized in

71 malware families. AMD reported 9 malware families that contain

native payload [42], and JN-SAF is able to detect 8 of them. The

missed one is Lotoor which is a family of all the rooting tools
3
. We

discuss in detail our findings in the following 4 case studies.

5.4.1 Case Study 1: Inter-language Data Leakage

Sensitive information leakage has been a widespread security issue

in Android platform. To make detection harder, malware moves the

leaky behavior into native world. JN-SAF detected two malware

families which has such behavior.

Triada obtains the IMSI of device in Java layer. Then it passes the

IMSI to native method nativeSayTest(). The corresponding native

function will then leak IMSI by invoking SmsManager.sendTextMess-
age(). JN-SAF detects this issue by generate a summary ∆(nativeS-
ayTest) = ⟨(sink(arд2)@Cx)⟩ and feed back to SBDA. SBDA marks

the IMSI as source and when nativeSayTest() is invoked with such

source the leak issue is reported.

Similar to Triada, Gumen gains the IMEI of device in Java layer.

Then it propagates the IMEI taint source to the third argument

of native method stringFromJNI(), which leaks IMEI by invoking

SmsManager.sendTextMessage(). JN-SAF utilizes the same detection

procedure for detecting Triada family. The generated summary is

∆(strinдFromJNI) = ⟨(sink(arд3)@Cx)⟩.

5.4.2 Case Study 2: Stealthy Command Execution

Malware writers love to use shell command to execute malicious

behaviors. For example, DroidKungFu is a backdoor malware that

try to root device and execute malicious code. It roots the device

with the aid of secbino program. If the device has not been rooted,

it will copy secbino to /data/data/pkg/secbino and chmod 4755 to get

the execution permission. Then it executes secbino to get the root

privilege and start a service to download other malware apks to

install.

JN-SAF detects these behaviors by modeling those Linux pro-

grams that can execute shell command, such as, popen, system, execv
etc.JN-SAF is able to get the parameters of those system API and

know what shell commands are executed.

5.4.3 Case Study 3: Stealthy C&C Communication

Command and Control(C&C) server is frequently used in malware

to conceal the malware command and control information genera-

tion process into network communication. This process can also

move to native world. JN-SAF detected a malware familty Boqx
which hide its C&C communication in the native payload.

3
Rooting behavior is hard to detect since each rooting method has complex and quite

different semantics.

Boqx launches a thread to exec native code in StatService class. In
the native world, it enables the WIFI to ensure the success of com-

municating with a server. Then it communicates with the server to

get the malicious payload and then dynamicly loads these payloads.

All these behaviors are completed by native reflection calls. JN-SAF
models all the JNI functions from JNINativeInterface structure. After
running ADA, we can know what kind of reflection calls are made

in the native world.

5.4.4 Case Study 4: Malicious Identity Hiding

Malicious identity such as server URL and premium number is

important for many malware analysis techniques. JN-SAF detects

two malware families Ogel and UpdtKiller that hide those identities
in the native world.

Ogel encapsulates its C&C server URL in native code, and when

it starts running it will reads the URL data by invoking a native

function Java_com_googlle_cn_ni_u(). Java_com_googlle_cn_ni_u()
uses NewStringUTF() to create a Java String of its URL. JN-SAF is

able to obtain the value of the C&C server URL. When malware

returns the server URL from native world to Java world through

native method, NativeDroid can generate summary that illustrates

this process ∆(u) = ⟨(ret = URL@Cx)(source(URL)@Cx)⟩. Then
JavaDroid will continue SBDA with the summary information.

UpdtKiller executes commands remotely to steal personal in-

formation, add artificial SMS messages to the inbox and intercept,

auto-reply and block SMS/MMS messages without user’s consent.

All the sensitive data required by communicating with the remote

server, including numbers and URLs, are stored in the native code.

UpdtKiller get these sensitive data via invoking native methods

with Get prefix, such as, GetNumber(), GetUrlHost() etc. These na-
tive methods invoke NewStringUTF to encapsulates the sensitive

data into Java String and return to Java world. NativeDroid gener-

ates summary ∆(GetNumber) = ⟨(ret = N@Cx)(source(N)@Cx)⟩,
and feed back to JavaDroid.

6 DISCUSSION
The inter-language related operations such as JNI reflection call

construction, dynamic function registration, and Intent value reso-

lution, all require precise resolution of string values. JN-SAF does

constant string propagation in both JavaDroid and NativeDroid. If
the string is manipulated JN-SAF will not be able to construct the

precise value. Precise string analysis is expensive and non-trivial

in both Java analysis and binary analysis as mentioned in prior

research [18, 22, 33]. We leave this for future research.

JavaDroid inherits some limitations from Amandroid [44]: 1) It

does not handle Java reflection and dynamic class loading in the

Java world; 2) The precision and soundness of summary genera-

tion depends on the faithfulness of the library API models; 3) It

cannot handle fine-grained concurrent execution. NativeDroid in-

herits path explosion issues from angr [36]. Control-/Data-flow
analysis of NativeDroid is mainly based on the symbolic execution

engine of angr. Path&State explosion are the natural defect of any

symbolic execution techniques when encountering large programs

as the analysis need to separate all the states for different execu-

tion paths. To alleviate explosion problem, NativeDroid needs to

better constrain the possible execution paths and states which are

non-trivial [14]. We will handle these limitations in future work.

To evade detection of static analysis, both Java and native code

can be obfuscated with techniques such as string encryption and

dynamic code loading. JN-SAF currently does not provide a solution
for such obfuscation. Anti-obfuscation techniques such as [30]

could be applied to improve the detection capability of JN-SAF .

7 RELATEDWORK
JN-SAF is a static and cross-layer analysis framework that includes

analysis for the native world of Android apps. Below we describe

three categories of works that are most closely related to ours.

7.1 Android Static Analysis
FlowDroid [12] is a dataflow analysis framework for taint detection

of the Android application. FlowDroid has an app-level dummy-
Main model to capture Android system events, then uses a flow

and context-sensitive IFDS [31, 32] algorithm to do taint detection.

FlowDroid avoids to handle native method invocation and applies a

comprehensive model for native method calls.

Epicc [28] leverages IFDS on FlowDroid to computes Android

Intent call parameters. However, it cannot resolve Intent call pa-

rameters if it presents in the native code.

IccTA [23] extends FlowDroid and uses IC3 [27] as the Intent

resolution engine. IccTA is able to track data flows through reg-

ular Intent calls and returns. IccTA shares the same limitation as

Flowdroid which does not handle any native method invocations.

DroidSafe [21] is yet another dataflow analysis framework for

Android application which tracks Intent communication and RPC

calls. DroidSafe adopted a flow-insensitive points-to analysis algo-

rithm which aims to handle all possible runtime event ordering.

DroidSafe does not handle native method call as well.

CHEX [25] is designed to detect component hijacking problem in

Android. CHEX is built on top of Wala [20], it first constructs app-
splits, each of which is a code segment reachable from an EP , then
uses the dataflow engine from Wala to computes the dataflow sum-

mary for each of the app-split. The app-splits summaries are then

linked in all possible permutations to detect possible information

flows. CHEX does not handle native method call.

SInspector [34] is designed to detect UNIX domain socket misuses.

SInspector uses Amandroid to generate Java layer dataflow and uses

IDA Pro to capture native dataflow. However, SInspector does not
track inter-language data flows nor model JNI functions.

Amandroid [43, 44] is a general flow and context-sensitive ICC-

aware dataflow analysis framework for security vetting of Android

applications. Amandroid generates environment model for each

Android component and applies a component-based analysis al-

gorithm to capture all possible intra-/inter-component data flows.

However, like all other Android static analysis framework, Aman-
droid does not handle native method calls. JavaDroid of JN-SAF
is built on top of Amandroid, which leverages many features from

Amandroid and provides a naive and comprehensive approach to

handle native method invocations and inter-language data flows.

7.2 Binary Code Analysis
BitBlaze [37] is a hybrid binary analysis platform, which contains

three components: 1) Vine: a static analysis component that trans-

lates assembly to IR, which supports x86 and ARMv4 architectures;
2) TEMU : It enables whole-system monitoring and dynamic binary

instrumentation; 3) Rudder : It utilizes Vine and TEMU to conduct

symbolic execution.

BAP [16] is binary analysis platform which supports x86 and

ARM architectures. BAP re-designs Vine to assist its front-end fea-

tures. After the IR translations process finished, BAP conducts its

back-end analysis in the IR granularity.

angr [36] is a binary analysis framework that combines many

existing program analysis technique into a single, coherent frame-

work, such as, Dynamic Symbolic Execution, Veritesting, Value-Set
Analysis (VSA). angr leverages the IR lifter of Valgrind [26] to trans-

late assembly to VEX IR, With the aid of VEX IR, angr provides
analysis support for many architectures including 32-bit and 64-bit

versions of ARM , MIPS, PPC, x86. NativeDroid of JN-SAF is built on

top of angr and uses its SimProcedure and Annotation features to

model NDK libraries and JNI functions.

7.3 Dynamic&Hybrid Analysis with Native
Information Tracking

DroidScope [46] is an Android application dynamic analysis tool

that reconstructs OS level and DVM level information. DroidScope
collects detailed native and Dalvik instruction traces, profile API-

level activity, and track information leakage through both the Java

and native components using dynamic taint analysis.

NDroid [29] performs dynamic taint analysis based on QEMU
and tracks information flows through JNI . NDroid instruments

important related JNI functions to resolve information flows, such

as JNI entry, JNI exit, object creation.Moreover, It models the system

library instead of instrumenting those standard functions to reduce

overhead. However, similar to all dynamic analysis systems, NDroid
has the path coverage issue and it does not track control flows.

TaintART [39] applies dynamic taint tracking by instrumentation

the ART compiler and runtime. TaintART follows NDroid’s method

to handle JNI calls.

Harvester [30] employs hybrid analysis for extracting runtime

values.When encountered with native methods,Harvester monitors

them as logging points to extract runtime values instead of stepping

into the native code to conduct the analysis.

Going Native [9] conducts static analysis to filter apps containing
native code firstly and then perform dynamic analysis to study the

native code usage of real-world Android apps. Then it generates

native code sandboxing security policy.

Malton [45] is a dynamic analysis platform aimed to do malware

detection that runs on ART runtime. Malton conducts multi-layer

monitoring including native layer and information flow tracking to

provide a comprehensive view of the Android malware behaviors.

DroidNative [10] utilizes specific control flow patterns to reduce

the impact of obfuscations and use it as semantic-based signatures

to detect malware in ART runtime.

8 CONCLUSION
In this paper, we presented the first Android static analysis frame-

work JN-SAF which can track precise control and data flow across

language boundary. JN-SAF provides a comprehensive model for

JNI functions, NDK libraries, and native Activities, which enables

dataflow analysis onAndroid binaries. JN-SAF leverages a summary-

based bottom-up scheme to do precise and compact inter-language

dataflow analysis and provides unified summary representation to

integrate Java and binary analysis results. Our experiments result

shows that JN-SAF can be readily applied to effectively address

real-world Android security issues which involve native payload

and inter-language communication.

ACKNOWLEDGMENTS
This research was partially supported by the U.S. National Sci-

ence Foundation under grant no. 1622402 and 1717862, the Chinese

National Science Foundation under grant no. 61572115, and the Chi-

nese National Key R&D Plan under grant no. 2016QY04X000. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the above agencies.

REFERENCES
[1] 2018. Android NDK. https://developer.android.com/ndk/. (2018).

[2] 2018. The Invocation API. https://docs.oracle.com/javase/8/docs/technotes/

guides/jni/spec/invocation.html. (2018).

[3] 2018. Java Native Interface Specification. https://docs.oracle.com/javase/7/docs/

technotes/guides/jni/spec/jniTOC.html. (2018).

[4] 2018. JNI Functions. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/

spec/functions.html. (2018).

[5] 2018. jpy - a Python-Java Bridge. https://github.com/bcdev/jpy. (2018).

[6] 2018. Mobile Operating System Market Share Worldwide.

http://gs.statcounter.com/os-market-share/mobile/worldwide. (2018).

[7] 2018. Native Activities and Applications. https://developer.android.com/ndk/

guides/concepts. (2018).

[8] 2018. Resolving Native Method Names. https://docs.oracle.com/javase/1.5.0/

docs/guide/jni/spec/design.html. (2018).

[9] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,

Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. 2016. Going native:

Using a large-scale analysis of android apps to create a practical native-code

sandboxing policy. In Proceedings of the NDSS.
[10] Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. 2017.

DroidNative: Automating and optimizing detection of Android native code mal-

ware variants. computers & security (2017).

[11] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

Androzoo: Collecting millions of android apps for the research community. In

Proceedings of the ACM MSR.
[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-

Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint

Analysis for Android Apps. In Proceedings of the ACM PLDI.
[13] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven

Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining Apps for Abnormal

Usage of Sensitive Data. In Proceedings of the IEEE ICSE.
[14] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and

Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (2018).

[15] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,

Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:

Driving Apps to Test the Security of Third-party Components. In Proceedings of
the USENIX Security Symposium.

[16] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.

BAP: A Binary Analysis Platform. In International Conference on Computer Aided
Verification. Springer, 463–469.

[17] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.

Analyzing inter-application communication in Android. In Proceedings of the
ACM Mobisys.

[18] Aske Christensen, Anders Møller, and Michael Schwartzbach. 2003. Precise

analysis of string expressions. Static Analysis (2003).
[19] Isil Dillig, Thomas Dillig, Alex Aiken, andMooly Sagiv. 2011. Precise and compact

modular procedure summaries for heap manipulating programs. In Proceedings
of the ACM PLDI.

[20] Stephen Fink and Julian Dolby. 2012. WALA–The TJ Watson Libraries for Analy-

sis. http://wala.sf.net/.

[21] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,

and Martin C Rinard. 2015. Information Flow Analysis of Android Applications

in DroidSafe. In Proceedings of the NDSS.

https://developer.android.com/ndk/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/invocation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://github.com/bcdev/jpy
https://developer.android.com/ndk/guides/concepts
https://developer.android.com/ndk/guides/concepts
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/design.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/design.html

[22] Ding Li, Yingjun Lyu, Mian Wan, and William GJ Halfond. 2015. String analysis

for Java and Android applications. In Proceedings of the ACM FSE.
[23] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-

Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In

Proceedings of the IEEE ICSE.
[24] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick

Fratantonio, Victor VanDer Veen, and Christian Platzer. 2014. Andrubis–1,000,000

apps later: A view on current Android malware behaviors. In Proceedings of
the Third International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). IEEE.

[25] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:

Statically vetting Android apps for component hijacking vulnerabilities. In Pro-
ceedings of the ACM CCS.

[26] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In ACM Sigplan notices. ACM.

[27] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick

McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-

Component Communication Analysis. In Proceedings of the IEEE ICSE.
[28] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,

Jacques Klein, and Yves Le Traon. 2013. Effective Inter-component Communica-

tion mapping in Android with Epicc: An Essential Step towards Holistic Security

Analysis. In Proceedings of the USENIX Security Symposium.

[29] Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. 2014. On Tracking

Information Flows through JNI in Android Applications. In Proceedings of the
IEEE Dependable Systems and Networks (DSN).

[30] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.

Harvesting Runtime Values in Android Applications That Feature Anti-Analysis

Techniques.. In Proceedings of the NDSS.
[31] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural

dataflow analysis via graph reachability. In Proceedings of the ACM POPL.
[32] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural

dataflow analysis with applications to constant propagation. Theoretical Computer
Science (1996).

[33] Daryl Shannon, Sukant Hajra, Alison Lee, Daiqian Zhan, and Sarfraz Khurshid.

2007. Abstracting Symbolic Execution with String Analysis. In Testing: Academic
and Industrial Conference Practice and Research Techniques-MUTATION. IEEE.

[34] Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and ZMorley Mao. 2016. The

Misuse of Android Unix Domain Sockets and Security Implications. In Proceedings
of the ACM CCS.

[35] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and

Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass

Vulnerabilities in Binary Firmware. In Proceedings of the NDSS.
[36] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In Proceedings of the IEEE S&P.
[37] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In

International Conference on Information Systems Security. Springer.
[38] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur

Khan. 2014. SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS Man-

in-the-Middle Vulnerabilities in Android Apps. In Proceedings of the NDSS.
[39] Mingshen Sun, Tao Wei, and John Lui. 2016. Taintart: A practical multi-level

information-flow tracking system for android runtime. In Proceedings of the ACM
CCS.

[40] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.

CopperDroid: Automatic Reconstruction of Android Malware Behaviors.. In

Proceedings of the NDSS.
[41] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick

Tague. 2014. A5: Automated Analysis of Adversarial Android Applications. In

Proceedings of the SPSM. 39–50.

[42] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep

Ground Truth Analysis of Current Android Malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’17).
Springer, Bonn, Germany, 252–276.

[43] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A

Precise and General Inter-component Data FlowAnalysis Framework for Security

Vetting of Android Apps. In Proceedings of the ACM CCS.
[44] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A

Precise and General Inter-component Data FlowAnalysis Framework for Security

Vetting of Android Apps. ACMTransactions on Privacy and Security (TOPS) (2018).
[45] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards

On-Device Non-Invasive Mobile Malware Analysis for ART. In Proceedings of the
USENIX Security Symposium.

[46] Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing

the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis.. In

Proceedings of the USENIX Security Symposium. 569–584.

[47] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get off of My

Market: Detecting Malicious Apps in Official and Alternative Android Markets.

In Proceedings of the NDSS.

	Abstract
	1 Introduction
	2 Background and Example
	2.1 Native Code Usage Modes in Android
	2.2 Native Development Kit (NDK)
	2.3 A Motivating Example

	3 Core Challenges and Our Solutions
	3.1 Challenge 1: Inter-language Analysis Challenge
	3.2 Challenge 2: Resolving Native Method Calls
	3.3 Challenge 3: Leveraging Existing Binary Analyzer for Dataflow Analysis
	3.4 Challenge 4: Handling Native Activity

	4 The JN-SAF Framework
	4.1 APK Preprocess
	4.2 Environment Model
	4.3 Summary-based Bottom-up Dataflow Analysis (SBDA)

	5 Evaluation
	5.1 RQ1: What is the statistics of native library usage in real world Android apps?
	5.2 RQ2: How does the running time of JN-SAF scale?
	5.3 RQ3: How does JN-SAF perform on Benchmark apps?
	5.4 RQ4: Is JN-SAF capable of discovering crucial security issues to aid in real-world app vetting?

	6 Discussion
	7 Related Work
	7.1 Android Static Analysis
	7.2 Binary Code Analysis
	7.3 Dynamic&Hybrid Analysis with Native Information Tracking

	8 Conclusion
	Acknowledgments
	References

