
This paper is included in the Proceedings of the
Seventeenth Symposium on Usable Privacy and Security.

August 9–10, 2021
978-1-939133-25-0

Open access to the Proceedings of the
Seventeenth Symposium on Usable Privacy

and Security is sponsored by

An Analysis of the Role of Situated Learning in
Starting a Security Culture in a Software Company

Anwesh Tuladhar, Daniel Lende, Jay Ligatti, and
Xinming Ou, University of South Florida

https://www.usenix.org/conference/soups2021/presentation/tuladhar

An Analysis of the Role of Situated Learning in
Starting a Security Culture in a Software Company

Anwesh Tuladhar Daniel Lende Jay Ligatti Xinming Ou
University of South Florida, Tampa, FL, USA

Email: {atuladhar, dlende, ligatti, xou} @usf.edu

Abstract
We conducted an ethnographic study of a software devel-

opment company to explore if and how a development team
adopts security practices into the development lifecycle. A
PhD student in computer science with prior training in qual-
itative research methods was embedded in the company for
eight months. The researcher joined the company as a soft-
ware engineer and participated in all development activities
as a new hire would, while also making observations on the
development practices. During the fieldwork, we observed a
positive shift in the development team’s practices regarding
secure development. Our analysis of data indicates that the
shift can be attributed to enabling all software engineers to
see how security knowledge could be applied to the specific
software products they worked on. We also observed that
by working with other developers to apply security knowl-
edge under the concrete context where the software products
were built, developers who possessed security expertise and
wanted to push for more secure development practices (secu-
rity advocates) could be effective in achieving this goal. Our
data point to an interactive learning process where software
engineers in a development team acquire knowledge, apply
it in practice, and contribute to the team, leading to the cre-
ation of a set of preferred practices, or “culture” of the team.
This learning process can be understood through the lens of
the situated learning framework, where it is recognized that
knowledge transfer happens within a community of practice,
and applying the knowledge is the key in individuals (soft-
ware engineers) acquiring it and the community (development
team) embodying such knowledge in its practice. Our data

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2021.
August 8–10, 2021, Virtual Conference.

show that enabling a situated learning environment for se-
curity gives rise to security-aware software engineers. We
discuss the roles of management and security advocates in
driving the learning process to start a security culture in a
software company.

1 Introduction

A wide range of research has addressed how to best estab-
lish secure development practices within a software devel-
opment team/company. The standard approach is to use a
secure development model to formulate a suitable secure soft-
ware development lifecycle (S-SDLC) [10,19,36,43]. Despite
the success of S-SDLC in its originating company [19], suc-
cessful establishment of secure development practices has
remained more difficult for the software industry at large. In
general, some companies are unwilling to place code security
on a level playing field with business considerations such as
time-to-market of the product. There are also companies that
make an effort to deliver secure code through the adoption of
secure development life cycles but have not been able to do
so effectively. Reasons for such failures have been posited as
lack of security knowledge in developers, lack of available
resources, lack of usable security, improper use of security
APIs, and so on [1, 12, 33, 35]. Use of security tools is of-
ten suggested as a way to help alleviate such problems by
catching developer mistakes before they land in the product.
However the adoption of security tools into development itself
can remain an issue [34]. Some studies allude to the notion
of security mindset or security culture within the company
as the influential factor in driving these secure development
practices [5, 17, 42]. But what is a security culture? What
are the benefits it provides and how can a company start to
develop such a culture?

We conducted an extensive ethnographic study in a soft-
ware company in order to understand how and why secure
coding practices are (or are not) integrated into software de-
velopment processes. We embedded a computer science PhD
student with training in qualitative methods as part of the

USENIX Association Seventeenth Symposium on Usable Privacy and Security 617

company’s software development team. Approximately two
months prior to the researcher joining, the company had initi-
ated the process of implementing a secure development life-
cycle, with upper-management declaring that security should
receive greater consideration. This new emphasis on security
provided us an opportune moment to conduct research into
whether and how such push for security may result in concrete
positive changes in the development processes. Our research
was helped by the company empowering a recently hired soft-
ware engineer who was also trained in security, to push for
secure development practices within the development team.
The main contributions of our work are as follows.

1. We identify an important factor in establishing secure de-
velopment practices in a software company – the role of
situated learning [20] that forms an integral part of soft-
ware engineers’ work. Rather than assuming structured
processes on their own can solve security problems, we
examine the context for learning about security within
the development environment and analyze how it shapes
the workflows followed by individual software engineers.
Our analysis of data shows that what was driving the
positive shift in the development team’s security aware-
ness can be explained by the learning dynamics existent
therein, in particular the software engineers being able
to identify the applicability of the security knowledge
within the context of the everyday work they perform.
The situated learning dynamics could drive the team
into a set of agreed-upon knowledge and the associated
practices, becoming the “preferred practices” for dealing
with specific security concerns. We hence identify a way
to start a secure coding culture in a development team.

2. Our data also indicate that the presence of a security
expert working within the development team is instru-
mental in driving the situated learning cycle for security.
It appears that when such security experts are part of the
development team, and their actions foster the learning
process, the adoption of secure coding practices become
more readily accepted by the team. In particular, we find
it important that security knowledge be offered within
the context of the team’s concrete work.

2 Fieldwork

Our fieldwork was conducted at a software development com-
pany headquartered in the United States with offices through-
out the world. The researcher was embedded in a development
team responsible for two security-related products developed
by the company, referred to as P1 and P2 in this paper. Due
to the ongoing COVID-19 pandemic, the mode of work var-
ied between work-from-home and on-premise. The company
followed local government guidelines; mandated work-from-
home when stay-at-home order was in effect, and provided

the flexibility of either work-from-home or on-premise other-
wise. For on-premise work, the company followed all safety
precautions by reorganizing the office setup to socially dis-
tance cubicles and providing masks and hand sanitizers. All
meetings were held through video conferencing even when
on premise. The advantages of being on premise were ease of
access to the test environment and ability to start impromptu
discussions and meetings when necessary.

2.1 The Development Team
The main participants were five software engineers (SWEs)
in the development team, two network engineers, two support
engineers, two sales/customer relations representatives, one
quality assurance engineer (QAE), one graphic designer, and
one vice president (VP), who also oversaw the management of
the two products. All SWEs had at least 1.5 years’ experience
within the company, with two having more than five years’
experience. The QAE joined during the fieldwork.

2.2 Research Methodology
We employed the qualitative research method of participant
observation [7, 29]. In this method, the researcher spends an
extended amount of time in the field taking part in day to day
activities and practices. This method allows researchers to
obtain in-depth understanding of practices such as software
development that take place over long periods of time.

The participant observer in this research was a computer
science PhD student with prior training in qualitative research
methods as well as ample industry experience. This experi-
ence allowed the researcher to integrate quickly into the daily
work. The researcher spent three days per week at the com-
pany for a duration of eight months. Although the researcher’s
background was in security, the researcher was not limited to
security-related tasks and participated in all activities a regular
SWE at the company would, such as sprint planning, scrum
meetings, bug fixes, feature design/implementation/testing,
and code reviews.

Our data analysis utilized the general inductive ap-
proach [30], augmented by specific techniques for qualitative
data analysis such as analytic notes and comparative analy-
sis [6]. The researcher maintained descriptive field notes on
daily activities and interactions. After three months of data
collection, the research team met weekly to reflect on the
observations made so far. The team went over the events of
the past week and discussed the events concerning software
development practices, security practices, and the relevant
interactions. For the security incidents encountered, we sep-
arately kept track of the process of identification, technical
details of the issue, and the progress made towards mitigating
them. The researcher coded the raw field data based on the
patterns and themes that emerged during these discussions.
Any unanswered questions and/or missing information during

618 Seventeenth Symposium on Usable Privacy and Security USENIX Association

these discussions then guided the future observations in the
field. The weekly iteration of data collections followed by
in-depth discussions led to the refinement of the emerging
categories used for coding (see Appendix for the final set of
codes used in our research). Then, as broader themes were
conceptualized, the researcher started to write analytic notes
summarizing each theme and documenting ideas and analysis
of each along with supporting data from exploration of code,
tickets, and other relevant sources in addition to the raw field-
work data. Multiple themes emerged and evolved throughout
this process. After the end of the fieldwork, the research team
continued further analysis of data through extensive discus-
sions to draw out the major implications of our observations
to secure software development practices.

The study was reviewed and approved by the Institutional
Review Board (IRB). The researcher explained the study goals
to participants and obtained verbal informed consent from
them. Field notes were anonymized, as well as discussions
during weekly research meetings.

3 Software Development Processes and Chal-
lenges Facing Secure Development

Approximately two months prior to the researcher joining the
development team, management instructed the team to em-
ploy secure software development lifecycle (S-SDLC). This
provided an invaluable opportunity for the research team to
examine whether and how secure development practices can
take hold in a software development team when there is buy-
in from the top. In this section, we describe our observations
of the company’s overall software development processes and
challenges facing secure development throughout our field-
work. In section 4 we focus our discussion on observations
and analysis of the shift in the development processes as a
result of the management push for S-SDLC.

The company adopted a sprint-based agile development
model. An issue-tracking tool was used for planning and
tracking the development progress throughout a sprint. We
describe this process below.

3.1 Sprint Planning
Everyone in the team was free to create a ticket for any work
that was not already tracked and would be added to the back-
log queue. However, only the lead SWEs could approve the
ticket for development. In addition, the VP and customer fac-
ing specialists could add feature tickets based on company
vision and customer requests/feedback. Each week the VP
and the lead sales representative, along with the lead SWEs
had a prioritization meeting where the new tickets were dis-
cussed, approved/rejected for future development, with the
approved tickets ranked based on priority. For each sprint, the
SWEs and QAE conducted a sprint planning meeting where
the highest priority tickets from the backlog were discussed

and assigned story points representing the estimated complex-
ity/amount of work. Story points for each ticket were agreed
upon by the whole team using SCRUM poker [41], where
each SWE and QAE anonymously assigned story points based
on their understanding of the required work. When the as-
signed scores varied widely, a discussion was held to allow
each SWE/QAE to explain the reasoning for their scores and
SCRUM poker was re-done, until everyone converged on a
common score. A total of 60-70 story points were targeted for
each sprint, which allowed for a small number of additional
high-priority tickets or unforeseen issues to be included in the
sprint at a later time.

3.2 Development Workflow
A short 20-30 minute scrum meeting was held every morning
to provide brief updates on the progress from the previous day,
any issues/roadblocks encountered, and goals for the current
day. The meeting was led by the lead SWE and included all
SWEs, the QAE, the graphic designer, and the VP. Additional
meetings were called by individuals as required to discuss
ticket requirements, design issues, knowledge transfer for
codebase, or testing strategies. We next discuss the stages of
development and the challenges facing secure development
in the context of each stage.

3.2.1 Design

A high-level design discussion was held during the sprint
planning. For simple tickets, the SWE assigned took the re-
sponsibility of finalizing the design. For more complex tickets,
discussions were held with the appropriate team members.
In some cases, a wiki page with suggested alternatives was
requested before such discussions.

Including security as a part of the design consideration
presented the following challenges.

Challenges regarding security knowledge of SWEs. Dur-
ing the design stage the main focus was to achieve functional
correctness and performance considerations when applicable.
When the features dealt with sensitive information, security
became a necessity. Yet, secure design practices were not
always the focus and instead assumed protection through “se-
curity functions” such as authentication and authorization. For
example, one SWE when asked if the input attributes should
be validated:

“I’m not sure I’d worry too much about that. This
form is authorized for admin only, so customers
won’t be changing this attribute themselves. Trying
to validate that they’ve provided a valid <redacted>
attribute feels kind of complicated. . . ”

Secure design must determine relevant threats (through
threat modeling) and consider all aspects of the software, but
it is a tall order to require all SWEs to have such knowledge
and skills.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 619

Challenges in understanding contextual knowledge by
a security expert. One of the software engineers in the team
had a significant background in security (called SecSWE here-
after). He was able to identify the relevant security risks and
propose secure design solutions. However, although he had
been working with the team for more than 1.5 years, the
knowledge of the minutiae of how the product operated was
lacking and the proposed solutions were not always directly
applicable for the product at hand. Since there was no one-
size-fits-all solution to security problems, secure design re-
quired in-depth knowledge of both security and the product.

3.2.2 Implementation

SWEs picked up tickets from the sprint plan to implement.
Again, the first priority of SWEs was to implement the func-
tional requirements of the tickets. We observed the following
secure development challenges in this stage.

Challenges regarding security knowledge in SWEs.
Even with security considerations in the design phase, the
actual implementation of code could expose vulnerabilities
if the SWE was not capable of defensive programming and
unaware of secure development practices. The main challenge
is that the SWE needs to be able to identify the potential secu-
rity risks in the code that he/she is writing. Other factors such
as reliance on frameworks, or incorrect use of frameworks or
APIs can also lead to insecure implementation. Such lack of
knowledge in SWEs cannot be simply compensated by the
presence of a security expert in the team. Usually in such
cases the identification of security issues shifts further down
the development process during code analysis or security test-
ing and presents additional challenges – the issue might be
missed altogether, fixing the security could require significant
code changes or even design changes, or there might not be
enough time in the sprint to fix the issues which might lead to
the ticket being excluded from the sprint.

Challenges in applying security knowledge in practice.
In certain cases SWEs were able to identify potential security
risks and also had the necessary knowledge to resolve them,
but chose not to do so. We concluded this based on our data
where we observed that during discussions regarding security
issues, often times some SWEs were able to propose the
solutions, but did not apply them in practice. This could be
attributed to multiple reasons such as lack of time, reliance on
security functions (such as authentication and authorization),
or security of code considered “invisible” to the customer
compared to the feature itself.

3.2.3 Continuous Integrations/Code Analysis

Once the implementation was complete, the source code was
pushed to the remote repository where automated builds were
carried out by the continuous integration (CI) pipelines. These
pipelines executed unit/integration tests and code analysis

tools such as SonarQube [37] (later Black Duck [44]) on the
feature branch.

Challenges on fully utilizing available tools. We found
that the available tools were not utilized to their full capabili-
ties. SonarQube was not maintained and mostly only relied
upon for simply lint and code quality checks. The team was
asked to set up Black Duck, a tool that analyzes the use of
third-party open-source libraries in the codebase and provides
information on licenses and known security vulnerabilities,
into the CI pipeline as a part of the secure development effort.
During discussions on the initial results of the scan, one SWE
remarked: “We use quite a few out-dated packages. I would
be surprised if this tool didn’t report any issues.” Black Duck
was setup on management’s request, and the scans were ini-
tially enabled by default in the CI pipeline. But the resulting
build failures in the Black Duck stage prevented SWEs from
merging in code. The tool was then disabled by default and a
separate ticket was filed to track and address the vulnerabili-
ties discovered.

3.2.4 Developer Testing

Before a ticket was assigned for code review, SWEs made
sure that all automated tests were passing, deployed the up-
dated product on a test environment, and performed their own
testing. These tests were usually targeted towards functional-
ity rather than security. Once functionality was verified, the
ticket was updated with the steps to replicate the test plan and
assigned for code review with the creation of a pull request.

3.2.5 Code Review

Two SWEs were assigned for code review. Usually one SWE
provided thorough review while the other would just sanity-
check the code. Depending on the complexity of the feature,
the reviewers may perform quick functionality tests on top
of going through the code changes. Any missing pieces, mis-
takes, inconsistency or departure from existing best practices
in the coding pattern were set up as tasks to be addressed
before the ticket was marked as “done.” We observed the
following challenges in this stage.

Challenges in consistently performing code review. Oc-
casionally, when the changes were required urgently, code
review was essentially skipped with the SWE just describing
the changes made to others and asking if anyone objected to
the approach. This could lead to potentially identifiable issues
propagating to the production code base.

Challenges in thoroughly performing security review.
Although SWEs provided good feedback during code review,
the suggested changes were based on internal best practices
and patterns followed in other similar modules in the product.
However, a thorough security code review requires more in-
depth security knowledge and experience which was lacking
in the SWEs. SecSWE however was able to provide specific

620 Seventeenth Symposium on Usable Privacy and Security USENIX Association

security-related feedback. A potential API misuse of a crypto-
library (bouncycastle [39]) was identified by SecSWE during
code review. While addressing this comment, it was discov-
ered that the API misuse could have caused memory leaks
leading to out of memory conditions.

3.2.6 Post Development Testing

The QAE, who was hired during our fieldwork, prepared thor-
ough test plans for each ticket in the sprint and carried them
out on the test build. We observed the following challenges at
this stage.

Challenges in acquiring contextual knowledge by QAE.
Although the QAE had years of prior experience, he was new
to the team and the products, and hence required assistance to
set up test environments and understand the specifics of the
product before he could create strategic test plans. The QAE
also had a security background and showed interest to learn
and practice security-oriented testing along with SecSWE.
But he expressed lack of time and in-depth knowledge about
the product as reasons not to do so at that time.

3.3 Product Release

At the end of a sprint, a build of the product including all
implementations in the sprint was deployed within the com-
pany for up to a week; then release notes were written and the
product was released. The customers were required to opt-in
for the updates, after which the support team executed the
remote update procedures.

4 A Shift in Secure Development Practice

Shortly after the researcher joined, one SWE from each prod-
uct team was assigned to be a member of a “virtual” appli-
cation security engineering team and tasked to help drive
security improvements for the product. This was part of the
secure software development lifecycle (S-SDLC) effort that
was kicked off before we joined. The designated SWE per-
formed security-related tasks in addition to the normal sprint
work. SecSWE was assigned this role for his team.

4.1 Little Impact at First

During the first three months of the fieldwork, the only
security-related work fell into two new categories of tickets
created as part of the S-SDLC efforts.

• CSF tickets: security-related tasks guided by the NIST
Cybersecurity Framework (CSF) [38].

• ASVS tickets: compliance with OWASP Application Se-
curity Verification Standard (ASVS) framework [40], for
web facing application components.

These tickets were not included in the sprint plan. SecSWE
and another developer (SWE1) were tasked to work on these
tickets alongside the sprint work. Both SecSWE and SWE1
worked on these tickets individually, and the only updates
about this work was provided briefly during morning scrum.
These tickets were referred to as “burning cycles” and often
the updates on these efforts carried little information:

• “I knocked off a couple of CSF tickets.”
• “I talked with <management personnel> about some

CSF work and what is expected.”
• “I will be catching up on some neglected CSF work and

write up some wikis.”
• “My changes are in PR. I will next work on ASVS tickets

while I wait for reviews.”
• “I am working on a P2 ticket and also doing some ASVS

audits.”

When talking to SecSWE on how the security work is
going, he remarked:

“I don’t know. It takes a lot of work for this ASVS
stuff, looking at all the code, testing, researching... I
feel like we are putting all of this effort and time on
this but nothing is being done about it you know.”

Although significant effort was put on resolving the CSF
and ASVS tickets, we did not observe any impact on the
development workflow as a whole.

4.2 Making Progress

During the third month of the fieldwork, SecSWE started
to work on threat models for both products. He first shared
the initial threat model for P1 with the team for feedback
which garnered greater visibility on the security work in the
development team as a whole and initiated discussions on the
communication patterns between the different microservices
in the product. SecSWE also documented the security issues
in order to facilitate the pending discussions for the threat
modeling work.

Prior to the threat modeling work, two security tickets had
also been logged: 1) The researcher discovered that the same
key pair was reused for all customers when P1 was setup
as a high availability (HA) pair. 2) On further investigation,
SecSWE discovered another instance of key reuse problem
in establishing connections to the cloud server. The threat
modeling work also initiated discussions and feedback from
other SWEs concerning these issues.

Another key mismanagement issue was discovered where
a private key was exposed in a publicly accessible server.
The initial response from other SWEs was that this server,
while Internet facing, was not advertised to the public as it
was mainly used to distribute software updates. Discussions

USENIX Association Seventeenth Symposium on Usable Privacy and Security 621

on the potential misuse cases of this issue in particular gar-
nered positive interest in security work with the lead SWE
remarking: “I am excited about the work SecSWE is doing.”

Security Scrum Poker. With several security tickets
logged, SecSWE suggested to have a meeting specifically
to discuss these tickets before the next sprint. Prior to the
meeting, everyone was asked to review the tickets and corre-
sponding wiki pages for discussion. SecSWE also introduced
the DREAD risk assessment scheme [21] and the security
scrum poker (akin to scrum poker) in order to assess the es-
timated risk of the discovered vulnerabilities. The goal was
for the entire team to converge on a risk score for each ticket,
discuss the rationale behind the scores in case of mismatch to
clarify everyone’s understanding of the issue, and ultimately
use the risk scores to prioritize the security tickets.

4.2.1 Putting Security into Development Context Made
Security into Development Practice

Three security scrum pokers were held during the fieldwork.
In the first meeting, two SWEs tended to score lower than
the others. As with scrum poker, in case of mismatch the
SWEs were asked to explain the rationale behind their scores.
This brought forward any misunderstanding of the discussed
issue and allowed the group to clarify them. After a couple of
iterations, one of the SWEs kept having varying scores and
tried to move on to another ticket by agreeing with the others’
scores but the lead SWE remarked: “You cannot just do that.
Either you have to defend the score or tell us why you changed
your mind.” The whole team agreed that the meeting was very
fruitful in clarifying their understanding of the issues and/or
the proposed solutions with the SWEs remarking:

• “That was more productive than I expected.”
• “I really liked this session and the discussions cleared

things up. I am excited to see where this effort leads.”

These discussions led to contextual analysis of the discov-
ered issues (what is the risk in the system?). They helped
uncover root causes of existing issues and bring forward
discussion on potential solutions, trade-offs for alternatives,
and potential road-blocks in implementing them. Importantly,
these discussions were useful to SecSWE as well.

The discussions between SecSWE and the lead SWE led
to the understanding of how and why the private key ended
up in the public-facing server in the first place – it turned
out that previously P1 was distributed to the customers using
Preboot Execution Environment (PXE) boot over the network.
Although this method had not been used for several years, it
was still used internally to quickly deploy test environments.
As setting up internal test environments did not require the
PXE boot kickstarter script to be on a public facing server, it
was subsequently moved to an internal server during the field-
work. This task required collaboration between SecSWE, lead
SWEs, as well as the networking engineers to implement, test,

and deploy. For the cases of reused keys, short-term solutions
of limiting users to only required commands while restricting
shell access altogether were proposed. A longer-term goal
to set up a per-deployment key management and distribution
mechanism was also discussed. During the fieldwork only the
task to research the approach was created.

After the first security scrum poker, SecSWE asked oth-
ers to also report any security issues they found. During the
course of the fieldwork 15 security tickets were created that
were not related to ASVS or CSF. The following are the cate-
gories of vulnerabilities discovered during the fieldwork.

• Mismanagement of cryptographic keys and certificates.
• Lack of access control to remote assets
• Improper handling of passwords
• Unencrypted application update channel
• Remote code execution
• Cross-site scripting (XSS)
• Privilege escalation
• SQL and command injection
• Misconfigured SAML (Security Assertion Markup Language)

authentication

These issues were discussed in at least one security scrum
poker meeting. SecSWE and the researcher also developed
proof-of-concept (PoC) attacks for application-level vulnera-
bilities such as remote code execution, XSS, Privilege esca-
lation, and SQL and command injection which helped drive
further discussions. Out of the 15 security tickets identified,
8 were approved for development after going through both
the security scrum poker and the prioritization stages. Six of
the approved tickets were included in a sprint plan. The re-
searcher asked for SecSWE’s opinion on the increased focus
on security. The response was:

“I am surprised by the increased focus on security
as well. They were not at all interested in these stuff
before. . . I had already reported some of these is-
sues before, although I didn’t have time to make
PoCs for it. But it’s good that we have some atten-
tion now.”

4.3 Challenges in Security Ticket Prioritiza-
tion

Although work was done to identify security issues, getting
them prioritized for development still presented challenges.

Security tickets were not considered “real.” Purely ad-
dressing existing security issues or improving security in
existing code/infrastructure was not considered as “real.” In
one sprint planning meeting after a few security tickets were
discussed and included in the sprint, the lead SWE remarked:

“Okay now let’s include some real tickets in here as well.” The
basis for this point of view seemed to be that security im-
provements made to existing features or to the infrastructure
were not visible to the customers.

622 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Security tickets had higher story points. Many security
tickets were voted to have high story points and hence would
not leave room to include other feature-driven tickets. The
reasons for higher scores include:

• Technical challenges: Security tickets required more re-
search and experimentation to figure out the most suit-
able solution for the product.

• Dependencies: Fixing existing security issues required
identifying all use cases of the vulnerable feature and the
impacts of the changes on the product. Finding depen-
dencies itself was time consuming as documentations
may be outdated, and additional developer and QAE
testing would be needed.

• Implied changes in processes: SWE/support/QAE may
be relying on the vulnerable features and may not want
to change. SWE may need to provide viable alternatives.

“Before we move on with the fix, we need to first find out if
there are undocumented use cases of these things. This
is not uncommon with the support team to have some
automated scripts which might rely on some access or
some feature and we do not want to break them.” This
could lead to additional work.

Legacy systems. Older systems already deployed at cus-
tomer sites may still need to be supported. In such cases,
alternative solutions needed to be provided or both new and
old systems needed to be supported. Some security holes
may be impossible to resolve because of initial bad design.
One ticket was blocked due to this very reason as around 20
customer sites were yet to be migrated to the updated system.

Meeting Customer Requirements. Customers were un-
willing to allow change of existing features. During a discus-
sion for changing the rule specification UI, which introduced
command injection vulnerability, one SWE mentioned that
they had already tried to remove that feature before as the
product already had an updated alternative built in. But the
customers were unwilling to migrate to the new feature as it
meant that they had to transition all the existing rules to the
new format and they were unwilling to do so. SWE said that
he already knew what this customer would say:

“If there are security issues then that is your prob-
lem and you need to fix it without taking away my
features.”

New customer requests. During the course of a sprint, new
high-priority customer tickets may be received. In such cases
the security tickets would be de-prioritized, as happened to
two security tickets included in the sprint plan.

4.4 Security-aware SWEs
After the introduction of security scrum pokers, there was an
increase in security-related discussions outside the meetings
as well. These ranged from humorous comments – “SecSWE
is not going to be happy if you do that.” or “He is the security

police now!? <laughs>” to positive reactions for including
security tickets during prioritization meetings: “SecSWE and
<the researcher> are pretty good with security.”

Security considerations in other tickets In addition to the
security tickets, security considerations were made in three
other feature tickets.

1. User-side error reporting for failed certification valida-
tion. The researcher was assigned this ticket which led to
a major refactoring of the code and use of an updated sin-
gle library for performing uniform certificate validation
throughout P1.

2. Enabling use of new certificate for SAML authentication
without requiring application restart. A certificate reuse
misconfiguration was discvoered while working on this
ticket. Code was refactored to allow proper configuration
changes.

3. Sending real-time alerts to customers. As part of the
ticket access control on cloud server was tightened to
disable shell access.

Potential security issues identified. Security issues were
also brought up and discussed by other SWEs.

1. An SWE discussed potential XSS vulnerabilities in an-
other team’s application while working with them, and
advocated for the other team to consider upgrading a
programming framework to the latest stable version.

2. Input validation was added in multiple modules proac-
tively by SWEs working on a ticket with UI changes.
Often they asked (in person or over slack) if validation
code was already implemented in the module or where
to look for reference validation code. In cases where
validation was complicated lead SWEs proposed how
the validation could be done.

“Do we have any input validation code that is used
both by <microservice1> and <microservice2>? If
so, do you remember where it is located?”

“. . . I know that it’s not a priority for management to
validate input that is supposed to be entered only
by support, but it doesn’t cost much.”

Security considerations in design. A feature requested by
a high-priority customer required the ability to access internal
configuration options otherwise hidden behind the applica-
tion for an unorthodox use case of product P1. The initial
design for the feature had not considered security risks with
the assumption that this feature would only be accessible
by the administrative account, which belongs to the support
team. SecSWE pointed out that such design could potentially
expose command injection and privilege escalation vulner-
abilities and started a discussion on the feature, which led
to the finding that the original design had overestimated the
access requirements to implement the desired functionality.
The initial design was then shelved with a follow up design
discussion scheduled to allow time to gather information for
a more secure approach.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 623

4.4.1 What was Driving the Change

On analysis of the fieldnote data, we find that the positive
shift in the development team’s security awareness can be
attributed to the software engineers being able to identify the
applicability of the security knowledge within the context of
the everyday work they performed. We observe that by work-
ing along with others in the team to apply security knowledge
under the concrete context of the software products, the soft-
ware engineers became attentive to security risks when similar
situations were encountered later. When a considerable num-
ber of discussions had taken place on a security-related topic,
the group ended up with an agreed-upon set of knowledge and
the associated set of practices became the “preferred practice”
for dealing with this security concern. At this stage, consider-
ing this specific aspect of code security became the group’s
“habit.” Later if some SWE in the team needed to work on
a relevant part of the code but lacked this specific piece of
security knowledge, they would seek guidance from others in
the team, in the same manner as they would with other types
of development tasks. They then learned and executed the
preferred practice of the group.

Our analysis of data shows that what was driving the posi-
tive change was the learning dynamics existent in the devel-
opment team. The initial lack of visible impact from manage-
ment pushing for adopting S-SDLC was because the CSF and
ASVS tickets were detached from the SWEs’ regular work,
and thus the relevant security knowledge did not have much
opportunity to be directly applied in their work. It turned out
that application of knowledge was the key driver for learning
in an environment like a development team. Later on when
SecSWE started to use security scrum poker in the threat
modeling work, and involved all SWEs in the discussions,
the security knowledge became concretized and contextual-
ized. This drove a learning cycle within the team that allowed
the SWEs to start obtaining relevant security knowledge and
become more security aware.

We find that understanding the learning dynamics in the
development team is crucial to effectively push for secure
development practices. In fact, making developers more secu-
rity aware is no different than cultivating their knowledge in
any other aspect of software development. Our data indicate
that, to establish a security culture in a development team,
it might be helpful to follow the same learning dynamics
that drive how culture forms for that community.

5 Learning in a Development Team

The analysis of our fieldnote data yielded a model that ex-
plains the establishment and evolution of preferred practices
in a development team and hence the progression of its culture.
In summary, the development team is a situated learning [20]
environment where the process of learning drives the creation
and evolution of preferred practices. When SWEs needed

assistance, they acquired the necessary knowledge from the
team. As they performed their task and applied the knowl-
edge in practice, it provided the necessary platform to further
drive the process of learning and started to make contributions
to the group. This process iterated over many cycles, until
the group reached a point of saturation where the knowledge
developed within the team was sufficient to facilitate progres-
sion in the task at hand. When this process was applied in
practice, it not only led to professional growth of the SWE
but also served as validation for the knowledge which then
became a part of the current culture of practice.

5.1 Subject Matter Experts (SMEs)

As is common in software industry these days, the products
the company built were vast entities and no single SWE knew
the details of all aspects of a product. Multiple dimensions
of knowledge were required within the development team in
order to build the software, and the in-depth knowledge of
each dimension was scattered between different SWEs in the
team. An SWE can be the subject matter expert (SME) for
some dimensions while at the same time being a novice in
others.

When an SWE had the most in-depth knowledge on a
topic within a development team, they were often called a
subject matter expert (SME) of that particular dimension of
knowledge. Although everyone in the team may have a good
understanding on the topic, the SME was the one who under-
stood the underlying details of the implementation. When an
SWE started to work on a task new to them, they first went
(or were directed to go) to the SME on the team. This created
an implicit hierarchy within the team based on the dimension
of knowledge under consideration, which facilitated the flow
of knowledge within the team. This hierarchy transcended
job titles. For example, despite holding a junior position in
the company, a new hire who had worked on a task could
immediately become the SME on certain pieces of knowledge
associated with the task, and any future queries related to
these pieces would first be directed towards them.

We observe the existence of SMEs throughout our data.
When trying to set up a test environment for a new router
device, an SWE asked the group: “I have read through the
documentation but I still cannot get it to work in our test
environment. Can anyone help me out?” He was directed to
one of the network engineers: “Normally, I just go and ask
<network engineer>. I do that even before going through the
documentation. 99% of the time, he knows what to do and I
trust him.”

When trying to get access to a development infrastructure,
the researcher asked the lead SWE: “I need to access the CA
server to test this feature. How do I get access?” Lead SWE:

“You should go ask SWE1. He just cleaned up the access list
for the CSF thing.”

When the lead SWE was asked the details of an existing

624 Seventeenth Symposium on Usable Privacy and Security USENIX Association

script: “Full disclosure, I have no idea how that script works.
<Former employee> implemented it and no one has had to
make changes till now. But <support engineer> should pro-
vide you more information. They are the ones who use it.” In
this case, although the SME is no longer within the company,
the workflow established through the use of the automation
script still remained and the next most knowledgeable person
took responsibility of it.

Our data shows that the roles of SMEs, the knowledge on
each dimension, and the preferred set of practices were not
static but were developed and evolved within the development
environment. When there were multiple potential SMEs on
a topic, the responsibility could be passed on to the others
as well. In some cases this also led to more official trans-
fers of duties within the team. For example, when dealing
with customer issues, the lead SWE was pulled into multiple
meetings between the customer support team and the clients.
Overwhelmed by the work, the team internally discussed the
possibility of having another SWE who was working on the
problem module for the past months to take over some of the
client discussions, with some guidance from the lead SWE.
After reaching an agreement, this was then communicated to
the management for future meetings.

5.2 Establishment of Preferred Practices
The development team tended to have established preferences
for activities that were carried out repeatedly. We observed
team preferences for coding styles, debugging techniques,
code reviews, ways of dealing with the IT department, use
of scripts/tools for tasks, etc. We also observe that these pre-
ferred practices were usually tried and tested approaches of
doing things within the team and were communicated to other
SWEs in the team as needed. For example, preferred coding
styles were communicated through the code itself while any
unwarranted deviations were communicated through code re-
views and reverted back to the preferred way. Any changes
made to improve the existing style were also communicated
through code and code review. Other preferences could be
communicated mainly through discussions between the SWEs
whether in a one-on-one or group setting. Usually an SWE
sought help from the group using language like “Got a sec-
ond for a rubber ducky?”, “Can I borrow some of your time
<SWE>?” SWEs were encouraged to hold these discussions
in the group chat as there could be more “eyes” on the prob-
lem and the solutions could be reached more quickly. These
discussions also allowed for the preferred practices to evolve
and improve as issues or better options were identified.

These preferred practices became a part of the group knowl-
edge and tended to stick through generations of employees. In
such cases some of the in-depth knowledge might be lost with
the employee leaving but the preferred practices continued.

• “That is a script that <former employee> developed and
we still use it.”

• “That playbook was written by a <former employee>. I
know what it does but I am not sure if it uses this script
internally. I would have to go read through the code but
it gets the job done.”

5.3 A Situated Learning Environment

Through analysis of the field notes we find that the roles of
“SME” and “learner”, assumed by different SWEs for different
dimensions of knowledge, drove a learning cycle within the
team. This interactive activity of learning was the core process
through which preferred practices were established within the
team.

The pattern of learning observed here is not new. The con-
cept of learning, not through a teacher/learner dyad, but as a
situated activity where a learner not only acquires knowledge
from the experts (“old-timers”) and their peers but does so
while participating and contributing in a community of prac-
tice is referred to as situated learning [20, 26, 32]. Learning,
in this view, is not simply a process of transfer or assimilation
of knowledge from the expert (SME) to learners (SWEs), but
rather a generative process where each “reproduction cycle”
from “learner” to “old-timer” leaves a trace in the community
of practice, in both its social structure and physical, linguistic
and symbolic artifacts.

The development team is a dynamic situated learning en-
vironment with a wide range of knowledge to be acquired
and mastered. Based on the dimensions of knowledge under
consideration, SWEs simultaneously perform multiple roles
of learning practitioner, aspiring expert, status subordinate, or
sole responsible agent [20]. The everyday activity of software
development provided situated opportunities to learn, defin-
ing the “learning curriculum” for the task that SWEs were
performing. As an SWE sought to learn from the team, differ-
ent SWEs enacted different roles to drive a learning cycle to
reproduce the existing culture of practice.

• “Are you guys available for a zoom to discuss the DNS
cache changes for the data viz stuff?”

• “Alright type gurus. I’m trying to make an interface that
is a Map between two sets of constants. I’m not allowed
to do what I posted above. Suggestions? . . . ”

Contradictions also arise as a part of this interactive social
process as learners start to contribute. Working on resolutions
to these contradictions leads to a renewed practice in the com-
munity, i.e., preferred practices are established and evolved
as SWEs go through the learning cycle.

In this vein, creating a secure development culture is the
process of making secure coding practices into the pre-
ferred practices of the development team. Thus, facilitating
situated learning regarding security within the development
team, is key.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 625

Acquire

Learner

Development team as a Community of Practice

SME
SMEs

Learners
Learners

Knowledgeable
SWE

Contribute Acquire

Continued
Application

Contribute

SME
Apply

Knowledge
in

Practice

Saturation

External
Knowledge/
Information

Knowledgeable
PeersKnowledgeable
PeersKnowledgeable
SWE

Figure 1: The Learning Cycle

5.4 The Learning Cycle
Figure 1 shows the interactions of an SWE with the develop-
ment team as he/she progressed from the role of a learner to
an SME. At any given time, an SWE could assume different
roles for different dimensions of knowledge. For example, the
SecSWE could be an SME on certain secure coding practices,
but at the same time a learner on some technical details about
a particular aspect of the product. External resources were
accessible at anytime throughout the process of learning. We
first describe the different roles an SWE could assume in this
learning cycle.

• Learner: An SWE started out as a learner acquiring
knowledge, the preferred set of practices, from the team.
Learners also looked to external resources on their own,
especially for a completely new aspect on which there
was no existing knowledge in the team yet. Such ac-
quisition of knowledge only made a difference in the
team’s practice when the SWE applied the knowledge in
the practice, whereby he/she started to contribute to the
team’s knowledge and progressed in the path of profes-
sional growth.

• Knowledgeable SWE: The application of acquired knowl-
edge in the context of daily practice by the SWE served
an important purpose – it provided the basis to have con-
textual discussions whereby the SWE was able to make
contributions to the group. The resulting iterations of
the interactive learning process led to a convergence in

understanding of the knowledge within the group, and
thereby the establishment of preferred practices.

• SME: When the learning cycle reached saturation and
no new contributions were made to the community of
practice, the SWE was able to assume the role of SME.
In terms of legitimate peripheral participation [20], the
SWE had reached full participation for that particular
dimension of knowledge space. The learning cycle then
continued for that dimension with other SWEs filling in
the role of learner and knowledgeable SWE.

We find that an effective learning cycle went through the
following stages to create, maintain, and grow the preferred
practices through multiple generations of employees.

Acquisition The most accessible and credible source for a
learner was the SME on the topic of interest. They provided
access to the current culture of practice to the new learner. The
level of knowledge available in the team varied depending
on factors such as education, prior experience, applicability
in the daily work, and so on. When the knowledge within
the team was sufficient, the learning cycle simply reinforced
the current preferred practices, as new learners continued
buying into it. In case of insufficient expertise within the
team, a new knowledge requirement was created which led
to individual/group research on the topic through external
resources. This could also be facilitated by a new member
joining the team who possessed the lacking knowledge.
Security Implication: the expertise levels of the SMEs on se-
curity within the team determine the team’s preferred practice
in secure coding.

Application Acquired knowledge needed to be applied in
daily practice to drive the learning process. This was a crit-
ical step in the learning cycle; without application in daily
work, the knowledge was limited to the individual SWE and
never became a part of the preferred practice. On the other
hand, applicability led to both individual and team growth
as the applied knowledge was immediately shared to the
peers through development activities like scrum meetings,
design/implementation discussions, code review, testing, doc-
umentation, and so on. This provided two important driving
forces that helped propagate the learning cycle: 1) a shared
motivation to solve problems, and 2) the shared context of the
work practices which everyone was aware of. These facilitated
bi-directional discussions as opposed to a teacher-student sce-
nario as is often perceived as how transfer of knowledge
happens.
Security Implication: SWEs’ security knowledge, like all
other knowledge, needs to be grown with application. This
works well for security, since the best time to apply security
knowledge is when the code is being written (as opposed to
applying security knowledge to fix vulnerabilities later on).

626 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Contributions As SWEs put knowledge into practice, they
were able to contribute to the group based on their experience
and findings from daily practice. This knowledge exchange
through application led to the growth and evolution of the
whole team with the increase in existing knowledge on the
topic. When there was an established/preferred/agreed upon
knowledge base on that given topic, the knowledge in the
group reached a level of saturation, and it became a part of
the preferred practices.
Security Implication: When security becomes part of the
preferred practice, all SWEs in the team will be security aware
while writing new code. We observe that the first successful
step towards implementing an effective S-SDLC and creating
a security culture in the development team was the rise of
security-aware SWEs. After all, if the SWEs are capable of
writing secure code, it will make a real change in the final
products’ security. As was pointed out in prior literatures, fix-
ing security bugs retroactively is costly and often encounters
resistance from the development team [18, 25]. Companies
would be better off to prevent, as much as possible, security
vulnerabilities from being introduced in the first place.

6 Revisiting the Shift towards Security

We now identify the key enablers of the positive shift in secure
development we observed during the fieldwork.

6.1 Setting Security as a Goal
Past experience suggested that management support was
an important factor in the successful implementation of S-
SDLC [19]. Our observations supported this. Due to cost in
terms of time and efforts required, security was easily per-
ceived as an “obstruction” to the daily practice of SWEs and
hence the learning cycle for this dimension of knowledge
did not evolve at first. We found that management played an
important role to set security as a goal, making it a part of
the deliverable. Doing so ensures that security knowledge is
not something that overwhelms SWEs but simply applicable
to daily practice, eliminating a critical barrier to drive the
learning cycle.

6.2 Applying Security Knowledge in Context
Having the management directive and support for secure cod-
ing was necessary but not sufficient to eliminate the barrier
to adopting secure development practices. Secure coding re-
quires a wide range of security knowledge, and providing
adequate education and awareness was pointed out as one
major challenge in successfully implementing S-SDLC [19].
While the company provided SWEs virtual training for secure
coding and there were also various guidelines and wiki pages
the SWEs could access, applying the acquired knowledge in
everyday work required expertise in both security and the

contextual knowledge of the existing code base. Finding this
connection was challenging for SWEs. Without application,
the knowledge gained from training was at best internalized
by individual SWEs, but remained detached from their daily
practice. The SWEs effectively considered security-related
tasks as secondary tasks, separate from their primary practice.
To overcome this, a bottom up support was also needed to
make real progress. In our fieldwork we found that such bot-
tom up support happened through the learning cycle identified
in the previous section. The threat modeling and associated
security scrum poker meetings, which involved all SWEs,
provided the opportunity for the SecSWE to put the relevant
security knowledge into the concrete context of the software
being built. This started the learning dynamics that enabled
all SWEs to progress on the “security dimension.”

6.3 The Role of Security Advocates
The work of SecSWE played an important role in facilitat-
ing the learning cycle and making security into part of the
development team’s preferred practices. SecSWE was a “se-
curity advocate” [15] even before the management pushed
to implement S-SDLC. He worked in the development team,
and was also assigned to be a part of the virtual security team,
providing additional security resources. Analyzing our data,
we find that this structure added more value to security advo-
cacy, making other SWEs more receptive to his advice as they
started to consider it “part of his job.” Working on the same
team provided an important factor in demonstrating the appli-
cability of the security knowledge in the context of the daily
practice. This facilitated SecSWE to contribute knowledge
as applicable to daily practice, helping to drive a productive
learning cycle, which was beneficial to both the rest of the
team and SecSWE himself. Through this interactive learning
process, SecSWE was able to better understand the necessary
details of the product which allowed him to apply his security
knowledge in a more context-aware manner. Further iterations
of this learning cycle led to more security-aware SWEs in the
team.

7 Limitations

Our work is limited by a few factors. First, our findings are
based on the fieldwork data collected by a single researcher.
Although the researcher had prior training and experience
in conducting participant observation research, the collected
data are shaped by the researcher’s positionality (his age, gen-
der, position in the company, and so forth). For example, the
researcher did not have as many interactions with customer
service and upper management because of his position in the
company. However, the researcher did build an overall under-
standing of the company during the research, and the results
were extensively discussed with the broader research group
during analysis to better account for any inherent biases in the

USENIX Association Seventeenth Symposium on Usable Privacy and Security 627

data. Second, our findings are based on the observations of a
single company with a particular size and structure. Although
we believe the development team is representative of one
in a mid-sized software development company, the specific
challenges of adopting secure development practices and how
they were/were not overcome may not be directly applicable
and generalizable to every company. As such, the model of
how a culture is developed within a software development
team might not be comprehensive. Nevertheless, during data
analysis, the team paid particular attention to how results re-
lated to common problems faced in security and software
development to ensure that the findings could be relevant to
other companies.

8 Recommendations for Companies

Our findings suggest a potentially useful strategy for a small
to medium sized company. Having a security expert as a part
of the development team, participating and advocating for se-
curity at every stage of the development process, is beneficial
in starting a security culture. This not only helps cultivate
security-aware developers, but also helps the security expert
identify security issues and collectively converge to secure
practices that are best suited for the project at hand. Devel-
opment of the relevant security knowledge in conjunction
with the regular software development skills promotes secure
coding practices which, overtime, become a part of the team
culture. Our research also observed the effect management
had in facilitating the positive shift. Even though the initial
efforts focused on the compliance tickets were not effective,
the fact that management made security an explicit goal pro-
vided the opportunity for the security advocates to experiment
different strategies that eventually led to positive results.

9 Related Work

Our fieldwork was conducted in the backdrop of the company
starting to implement a secure development lifecycle, a con-
cept first articulated by Howard and Lipner [19]. This seminal
work highlighted the importance of education and training
in creating S-SDLC. Our findings further indicate that under-
standing the learning dynamics, in particular how preferred
practices are established within a software development team
through the situated learning framework, can be instrumental
in creating positive changes in secure development.

There is a long line of study on developers’ role in software
security. Some used psychological techniques [24]. Others
used surveys and interviews [3, 5, 13, 22, 28, 35] as well as
study of code artifacts [3, 22]. More recently, researchers
have used secure coding competitions [27, 31] and controlled
experiments [2–4, 11, 23] to study the problem. Our work
is unique in that we use long-term participant observation
conducted in a real company. The longitudinal study based

on real-world observations allows us to obtain deep insights
that are otherwise hard to come out through snapshots-in-time
study or self-reported data.

Palombo et al. [25] used ethnographic methods to study
a software company’s secure development processes. The
authors indicated that a co-creation model where security ex-
perts working inside the development team could produce
positive changes in secure development processes. Our work
revealed the role of learning dynamics in pushing for positive
shift in adopting secure development processes. The role situ-
ated learning plays in starting a secure development culture
is consistent with the co-creation model.

The SecSWE in our study can be viewed as a “security
advocate,” which has been extensively discussed in recent
studies [14–16]. Our findings on the role of team culture in
security awareness of SWEs echoes that from prior studies.
Assal and Chiasson [5] explored how security best practices
are integrated into the software development lifecycles and
found that company culture is an influential factor in adoption
of security practices. Haney et al. [17] carried out in-depth
interviews to understand cryptographic development and test-
ing practices in organizations and found that rigorous secure
development and testing practices are guided by a strong se-
curity culture within organizations. They also identify that
security experts within the team are critical influences in the
security culture of an organization and in supporting less-
experienced personnel. Our findings confirm the important
role security advocates play in starting a security culture, and
further provide guidance on how to make security advocates’
work effective, through understanding the underlying learning
dynamics that drive the formation of a development team’s
culture.

There are also past work that examined the effect of learn-
ing from experience in software development [9], and work
that analyzed open-source software development using the
situated learning framework [8]. Our work focuses on se-
cure development, and our research findings are consistent
with these earlier works which focused on learning’s role in
software development in general.

10 Conclusion

We present an ethnographic study of secure development
processes in a software company. Our research was able to
observe the unfolding of implementing a secure development
life cycle in the company. Data analysis shows that a positive
shift in developers’ security awareness resulted from underly-
ing situated learning dynamics, where security knowledge is
constantly applied in the concrete work of the development
team. This process drives the establishment of secure coding
practices as the preferred practices of the team, essentially
establishing a secure development culture. We find that a se-
curity expert working within the development team could be
instrumental in driving this positive shift.

628 Seventeenth Symposium on Usable Privacy and Security USENIX Association

Acknowledgments

We thank Raj Rajagopalan, John McHugh, and the anonymous
reviewers for numerous valuable comments on an earlier ver-
sion of this paper. We owe gratitude to the company, and
its employees who participated in the study. This research
is supported by the U.S. National Science Foundation under
Grant No. 1801633. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Y. Acar, S. Fahl, and M. L. Mazurek. You are not your
developer, either: A research agenda for usable security
and privacy research beyond end users. In 2016 IEEE
Cybersecurity Development (SecDev), pages 3–8, 2016.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L Mazurek, and
Christian Stransky. Comparing the usability of cryp-
tographic APIs. In IEEE Symposium on Security and
Privacy, San Jose, CA, USA, 2017.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. You
get where you’re looking for: The impact of informa-
tion sources on code security. In IEEE Symposium on
Security and Privacy, San Jose, CA, USA, 2016.

[4] Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L Mazurek, and Sascha Fahl. Security devel-
oper studies with github users: Exploring a convenience
sample. In Thirteenth Symposium on Usable Privacy
and Security ({SOUPS} 2017), pages 81–95, 2017.

[5] Hala Assal and Sonia Chiasson. Security in the software
development lifecycle. In 14th Symposium on Usable
Privacy and Security, Baltimore, MD, USA, 2018.

[6] H Russell Bernard, Amber Wutich, and Gery W Ryan.
Analyzing qualitative data: Systematic approaches.
SAGE publications, 2016.

[7] Kathleen M. DeWalt and Billie R. DeWalt. Partici-
pant Observation: A Guide for Fieldworkers. Lanham:
AltaMira Press, second edition, 2011.

[8] Kasper Edwards. Epistemic communities, situated learn-
ing and open source software development, 2001.

[9] Wai Fong Boh, Sandra A Slaughter, and J Alberto Es-
pinosa. Learning from experience in software devel-
opment: A multilevel analysis. Management science,
53(8):1315–1331, 2007.

[10] David Geer. Are companies actually using secure devel-
opment life cycles? Computer, 43(6):12–16, 2010.

[11] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Möller, Yasemin Acar, and
Sascha Fahl. Developers deserve security warnings, too:
On the effect of integrated security advice on crypto-
graphic API misuse. In 14th Symposium on Usable
Privacy and Security, Baltimore, MD, USA, 2018.

[12] M. Green and M. Smith. Developers are not the en-
emy!: The need for usable security apis. IEEE Security
Privacy, 14(5):40–46, 2016.

[13] Matthew Green and Matthew Smith. Developers are not
the enemy!: The need for usable security APIs. IEEE
Security & Privacy, 14(5):40–46, 2016.

[14] Julie M. Haney and Wayne Lutters. Security aware-
ness in action: A case study. In Workshop on Security
Information Workers, USENIX Symposium on Usable
Privacy and Security, Santa Clara, CA, USA, 2019.

[15] Julie M. Haney and Wayne G. Lutters. “It’s scary. . . it’s
confusing. . . it’s dull”: How cybersecurity advocates
overcome negative perceptions of security. In 14th Sym-
posium on Usable Privacy and Security, Baltimore, MD,
USA, 2018.

[16] Julie M. Haney and Wayne G. Lutters. Motivating cyber-
security advocates: Implications for recruitment and re-
tention. In Computers and People Research Conference,
Nashville, TN, USA, 2019. Association for Computing
Machinery.

[17] Julie M. Haney, Mary Theofanos, Yasemin Acar, and
Sandra Spickard Prettyman. “We make it a big deal in
the company”: Security mindsets in organizations that
develop cryptographic products. In 14th Symposium
on Usable Privacy and Security, Baltimore, MD, USA,
2018.

[18] Bill Haskins, Jonette Stecklein, Brandon Dick, Gregory
Moroney, Randy Lovell, and James Dabney. 8.4.2 error
cost escalation through the project life cycle. INCOSE
International Symposium, 14:1723–1737, 06 2004.

[19] Michael Howard and Steve Lipner. The security devel-
opment Lifecycle, volume 8. Microsoft Press Redmond,
2006.

[20] Jean Lave, Etienne Wenger, et al. Situated learning: Le-
gitimate peripheral participation. Cambridge university
press, 1991.

[21] JD Meier. Improving web application security: threats
and countermeasures. Microsoft press, 2003.

USENIX Association Seventeenth Symposium on Usable Privacy and Security 629

[22] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bod-
den. Jumping through hoops: Why do java developers
struggle with cryptography apis? In Proceedings of the
38th International Conference on Software Engineering,
ICSE ’16, page 935–946, New York, NY, USA, 2016.
Association for Computing Machinery.

[23] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, Marco Herzog, Sergej Dechand, and Matthew
Smith. Why do developers get password storage wrong?
a qualitative usability study. In ACM SIGSAC Confer-
ence on Computer and Communications Security, Dal-
las, Tex, USA, 2017.

[24] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-
Chuan Yeh, Justin Cappos, and Yanyan Zhuang. It’s the
psychology stupid: how heuristics explain software vul-
nerabilities and how priming can illuminate developer’s
blind spots. In 30th Annual Computer Security Applica-
tions Conference, New Orleans, LA, USA, 2014.

[25] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende, Jay
Ligatti, and Xinming Ou. An ethnographic understand-
ing of software (in)security and a co-creation model to
improve secure software development. In Sixteenth Sym-
posium on Usable Privacy and Security (SOUPS 2020),
pages 205–220. USENIX Association, August 2020.

[26] Barbara Rogoff. Developing understanding of the idea
of communities of learners. Mind, culture, and activity,
1(4):209–229, 1994.

[27] Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Michelle L Mazurek, and Piotr Mardziel. Build it, Break
it, Fix it: Contesting secure development. In 2016 ACM
SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, 2016.

[28] Adam Shostack, Matthew Smith, Sam Weber, and
Mary Ellen Zurko. Empirical Evaluation of Se-
cure Development Processes (Dagstuhl Seminar 19231).
Dagstuhl Reports, 9(6):1–25, 2019.

[29] James P. Spradley. Participant Observation. Holt, Rine-
hart, and Winston, 1980.

[30] David R Thomas. A general inductive approach for
analyzing qualitative evaluation data. American journal
of evaluation, 27(2):237–246, 2006.

[31] Daniel Votipka, Kelsey Fulton, James Parker, Matthew
Hou, Michelle L. Mazurek, and Michael Hicks. Under-
standing security mistakes developers make: Qualitative
analysis from Build It, Break It, Fix It. In 29th USENIX
Security Symposium, Boston, MA, USA, 2020.

[32] Etienne Wenger. Communities of practice: Learning,
meaning, and identity. Cambridge university press,
1999.

[33] Glenn Wurster and P. C. van Oorschot. The developer
is the enemy. In Proceedings of the 2008 New Secu-
rity Paradigms Workshop, NSPW ’08, page 89–97, New
York, NY, USA, 2008. Association for Computing Ma-
chinery.

[34] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill.
Social influences on secure development tool adoption:
Why security tools spread. In Proceedings of the 17th
ACM Conference on Computer Supported Cooperative
Work & Social Computing, CSCW ’14, page 1095–1106,
New York, NY, USA, 2014. Association for Computing
Machinery.

[35] J. Xie, H. R. Lipford, and B. Chu. Why do program-
mers make security errors? In 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC), pages 161–164, 2011.

[36] Build security in maturity model | BISIMM. https:
//www.bsimm.com/.

[37] Code quality and security | SonarQube. https://www.
sonarqube.org/.

[38] Framework for improving critical infrastructure cyber-
security. https://nvlpubs.nist.gov/nistpubs/
CSWP/NIST.CSWP.04162018.pdf.

[39] The legion of the bouncy castle. https://www.boun
cycastle.org/.

[40] OWASP ASVS. https://owasp.org/www-project-
application-security-verification-standard
/.

[41] Planning poker - wikipedia. https://en.wikipedia
.org/wiki/Planning_poker.

[42] The security mindset. https://www.schneier.com
/blog/archives/2008/03/the_security_mi_1.h
tml.

[43] Software assurance maturity model (SAMM). https:
//www.opensamm.org/.

[44] Software composition analysis | Black Duck Software.
https://www.blackducksoftware.com/.

630 Seventeenth Symposium on Usable Privacy and Security USENIX Association

https://www.bsimm.com/
https://www.bsimm.com/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://en.wikipedia.org/wiki/Planning_poker
https://en.wikipedia.org/wiki/Planning_poker
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.opensamm.org/
https://www.opensamm.org/
https://www.blackducksoftware.com/

A Appendix: Codebook

Coding of the fieldnote data followed the general guidelines
of inductive approach [30] and grounded theory [6]. It was
an iterative process and started after the first three months of
the field work. The research team held weekly meetings to
discuss and reflect on the data collected. Themes and patterns
emerged from those discussions and various codes were used
to tag the content in the raw fieldnote. Coding was done
by the embedded researcher only, to protect the privacy of
participants. Below is the list of codes used.

• Bug discovery
• Bug discovery:internal
• Communication issue
• Compliance:asvs
• Compliance:csf
• Compliance:csf:thirdparty
• Compliance:encryption
• Compliance:phishing
• Cross product issue
• Customer pressure
• Feature pressure
• Forgotten issue
• Ignored issue

• Infra
• Infra:legacy
• Infra:security
• Learn
• Learn:best practice
• Learn:figure out
• Learn:peer programming
• Learn:review
• Policy change
• Preferred practice:code
• Preferred practice:support
• Preferred practice:workflow
• Remote work issues
• SME
• SME:handover
• SME:new
• Secure development
• Security-aware
• Threat modeling
• Threat modeling:dread
• Training
• Workflow change

USENIX Association Seventeenth Symposium on Usable Privacy and Security 631

	Introduction
	Fieldwork
	The Development Team
	Research Methodology

	Software Development Processes and Challenges Facing Secure Development
	Sprint Planning
	Development Workflow
	Design
	Implementation
	Continuous Integrations/Code Analysis
	Developer Testing
	Code Review
	Post Development Testing

	Product Release

	A Shift in Secure Development Practice
	Little Impact at First
	Making Progress
	Putting Security into Development Context Made Security into Development Practice

	Challenges in Security Ticket Prioritization
	Security-aware SWEs
	What was Driving the Change

	Learning in a Development Team
	Subject Matter Experts (SMEs)
	Establishment of Preferred Practices
	A Situated Learning Environment
	The Learning Cycle

	Revisiting the Shift towards Security
	Setting Security as a Goal
	Applying Security Knowledge in Context
	The Role of Security Advocates

	Limitations
	Recommendations for Companies
	Related Work
	Conclusion
	Appendix: Codebook

