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Abstract. Lazy proof explication is a theorem-proving architecture that allows
a combination of Nelson-Oppen-style decision procedures to leverage a SAT
solver’s ability to perform propositional reasoning efficiently. The SAT solver
finds ways to satisfy a given formula propositionally, while the various decision
procedures perform theory reasoning to block propositionally satisfied instances
that are not consistent with the theories. Supporting quantifiers in this architecture
poses a challenge as quantifier instantiations can dynamically introduce boolean
structure in the formula, requiring a tighter interleaving between propositional
and theory reasoning.
This paper proposes handling quantifiers by using two SAT solvers, thereby sep-
arating the propositional reasoning of the input formula from that of the instan-
tiated formulas. This technique can then reduce the propositional search space,
as the paper demonstrates. The technique can use off-the-shelf SAT solvers and
requires only that the theories are checkpointable.

0 Introduction

Automatic verification of hardware and software systems requires a good decision pro-
cedure for the conditions to be verified. Verification conditions generated for the verifi-
cation of software involve functions and predicates for many types of values, including
those of the source programming language. Designing decision procedures for these in-
dividual theories may be easier than designing a decision procedure that handles all of
them. Nelson and Oppen [11, 10] developed a famous method for combining decision
procedures of a class of first-order theories. Because of its modular architecture, theo-
rem provers based on this method can readily support many interesting theories that are
useful in practice. Many theorem provers are based on such combinations, for example
Simplify [4], Verifun [6], ICS [2], and CVC Lite [1], and these have been applied to the
verification of hardware and software systems.

Software verification conditions also involve quantified formulas. For example, the
verification conditions generated by the program checker ESC/Java [8] use quantified
formulas in several ways: (0) to specify a partial set of properties of otherwise uninter-
preted functions, (1) to axiomatize properties guaranteed by Java and its type system, (2)
to describe a procedure call’s effect on the program heap, (3) to state object invariants



for all objects of a class, and (4) to support quantifiers, usually over array elements, sup-
plied by the user. Unfortunately, the Nelson-Oppen combination method is applicable
only to quantifier-free first-order formulas. Reasoning about quantifiers in this setting
cannot be handled as an ordinary theory, but instead needs special support. Another
problem is that it is not always possible to have a terminating decision procedure when
the input formulas contain quantifiers, but the prevalence of quantified formulas in im-
portant problems demands that the theorem provers handle them effectively in practice.

The Simplify theorem prover [4] provides support for quantified formulas that has
been shown to be effective for software verification applications, for example in ex-
tended static checking [5, 8]. Simplify uses a kind of pattern matching of ground terms
to trigger the instantiation of universally quantified formulas. However, Simplify does
not handle propositional search very efficiently. A new generation of theorem provers,
including Verifun [6], ICS [2], and CVC Lite [1], attempt to speed up the propositional
search by leveraging the last decade’s advances in SAT solving and using a lazy-proof-
explication architecture. In such an architecture, a Nelson-Oppen combination of deci-
sion procedures interacts with an off-the-shelf SAT solver: the SAT solver finds ways
to satisfy a given formula propositionally, while the combination of other decision pro-
cedures performs theory reasoning to block propositionally satisfied instances that are
not consistent with the theories.

To use such a new-generation theorem prover in software verification applications,
we seek to incorporate support for quantified formulas in the lazy-proof-explication ar-
chitecture. This poses the following key challenges. First, quantified formulas typically
involve propositional connectives. As a result, quantifier instantiations performed dur-
ing theory reasoning can dynamically introduce boolean structure in the formula. This
requires tighter interleaving between propositional and theory reasoning. Second, most
quantifier instantiations are not useful in proving the validity of the formula. Blindly
exposing such redundant instantiations to the SAT solver could drastically reduce the
performance of the propositional search.

Support for quantified formulas in a lazy-proof-explication prover has been incorpo-
rated into Verifun [7]. When the quantifier instantiations result in formulas with propo-
sitional structure, Verifun augments the original formula with such instantiations so that
the SAT solver can find ways to satisfy these instantiations in the context of the original
formula. However, the added disjunctions then persist in the prover’s state.

As an alternative approach, we propose a two-tier technique in this paper. This tech-
nique involves two off-the-shelf SAT solvers, a main solver that performs the proposi-
tional reasoning of the input formula, and a little solver that reasons over the quan-
tifier instantiations. When the main SAT solver produces a propositionally satisfying
instance that is consistent with the decision procedures, a pattern matching algorithm,
similar to the one in Simplify, generates a set of quantifier instantiations. The little SAT
solver, along with the decision procedures, tries to falsify the satisfying instance with
the instantiations produced. If successful, the little SAT solver then generates a block-
ing clause that only contains literals from the input formula. By thus separating the
propositional reasoning of the input formula from that of the instantiated formulas, this
technique reduces the propositional search space.



Section 1 introduces some preliminaries and reviews the architecture of theorem
provers based on lazy proof explication. Section 2 discusses the main problem in han-
dling quantifiers in lazy-proof-explication theorem provers. The quantifier algorithm is
presented in Section 3. We trace through an example in Section 4 and report on our
preliminary experience with an implementation of the algorithm in Section 5. The final
sections offer a discussion, some related work, and a conclusion.

1 Theorem proving using lazy proof explication

In this section, we review in more detail the architecture and main algorithm of a theo-
rem prover based on lazy proof explication.

1.0 Terminology

A formula is constructed from an arbitrary combination of function and predicate sym-
bols, propositional connectives, and first-order quantifier bindings. The following is an
example formula:

(∀ a, i , v • 0 � i ∧ i < Length(a) ⇒ read(write(a, i , v), i) = v ) ∧
Length(b) > 0
⇒ read(write(b, 0, 10), 0) = 10

An atom is a formula that does not start with a propositional connective. Propo-
sitional connectives include conjunction ( ∧ ), disjunction ( ∨ ), negation (¬), and
implication ( ⇒ ). For example, the following are all atoms:

(∀ a, i , v • 0 � i ∧ i < Length(a) ⇒ read(write(a, i , v), i) = v ),
Length(b) > 0,
read(write(b, 0, 10), 0) = 10.

A quantifier atom is an atom that starts with a quantifier. A literal is either an atom
or its negation. A quantifier literal is either a quantifier atom or its negation. A monome
is a set of literals. If P is a set of formulas, we sometimes write just P when we mean
the conjunction of the formulas in P .

A theorem prover can be equivalently viewed either as a validity checker or a sat-
isfiability checker: establishing the validity of a given conjecture P is equivalent to
showing a satisfying assignment does not exist for ¬P . For the theorem provers dis-
cussed in this paper, we take the second view, thinking of the input as a formula (the
negation of a conjecture) to be satisfied or shown unsatisfiable. We define three notions
of satisfiability for a formula Φ : propositional satisfiability (PSat(Φ)), satisfiability
with theories (TSat(Φ)), and satisfiability with theories and quantifiers (QSat(Φ)).

0. PSat(Φ) = True if there exists a satisfying truth value assignment to every atom
in Φ .

1. TSat(Φ) = True if PSat(Φ) = True and the truth value assignment to the non-
quantifier atoms is consistent with the underlying theories.



2. QSat(Φ) = True if PSat(Φ) = True and the truth value assignment to the atoms
is consistent with both the underlying theories and the semantics of quantifiers.

Proposition 0 QSat(Φ) implies TSat(Φ) , which in turn implies PSat(Φ) .

We define a lemma to be a formula that does not affect the satisfiability of any
formula. That is, if P is a lemma and Φ is any formula, then QSat(Φ) iff QSat(Φ ∧
P) . Note that if both P and Q are lemmas, then so is P ∧ Q . And if P is a lemma
and P implies Q , then Q is also a lemma. In this paper, we use three kinds of lemmas:

0. a tautology generated by the theories,
1. a quantifier instantiation lemma of the form (∀ x • P(x ) ) ⇒ P(a) , which is

also a tautology,
2. a quantifier skolemization lemma of the form (∃ x • P(x ) ) ⇒ P(K ) for an

appropriate skolem function K , as defined later.

1.1 Lazy proof explication

In a lazy-proof-explication theorem prover, an off-the-shelf SAT solver conducts propo-
sitional reasoning of an input formula Φ . The SAT solver treats each atom in Φ as an
opaque propositional variable. When possible, the SAT solver returns a truth value as-
signment m of these atoms that propositionally satisfies Φ . The theorem prover then
invokes the theory-specific decision procedures to determine if the monome m is con-
sistent with the underlying theories. If so, the input formula Φ is satisfiable. If not, the
theories are responsible for producing a lemma that shows the monome m to be in-
consistent. By conjoining this lemma to Φ—which by the definition of lemma does not
change the satisfiability of Φ—the theorem prover blocks the assignment m .

For example, suppose a theorem prover is asked about the satisfiability of the fol-
lowing formula:

([[x � y]] ∨ [[y = 5]]) ∧ ([[x < 0]] ∨ [[y � x ]]) ∧ ¬[[x = y]]

where for clarity we have enclosed each atom within special brackets. As (the proposi-
tional projection of) this formula is passed to the SAT solver, the SAT solver may return
a monome containing the following three literals (corresponding to the truth value as-
signment to three atoms):

[[x � y]], [[y � x ]], ¬[[x = y]] (0)

This monome is then passed to the theories, where the theory of arithmetic detects an
inconsistency and return the following lemma:

[[x � y]] ∧ [[y � x ]] ⇒ [[x = y]] (1)

By conjoining this lemma to the original formula, the propositional assignment (0) is
explicitly ruled out in the further reasoning performed by the SAT solver. Since (1) is
a lemma, it could have been generated and conjoined to the input even before the first
invocation of the SAT solver, but the strategy of generating this lemma on demand—that
is, lazily—is the reason the architecture is called lazy proof explication.



Input: formula F
Output: satisfiability of F

while (PSat(F)) {
let monome m be the satisfying assignment ;
P := CheckMonome(m) ;
if (P = ∅) {

return True ;
} else {

F := F ∧ P ;
}

}
return False ;

Fig. 0. Lazy-proof-explication algorithm without support for quantifiers.

Figure 0 outlines the algorithm of a theorem prover using lazy proof explication.
PSat(F ) is implemented by calling an off-the-shelf SAT solver (after projecting the
atoms onto propositional variables). If the result is True , a monome m is returned as
the satisfying assignment. Then, CheckMonome is called to determine if m is consis-
tent with the underlying theories. CheckMonome(m) returns a set of lemmas that are
sufficient to refute monome m . An empty set indicates that the theories are unable to
detect any inconsistency, in which case the algorithm reports that the original formula
is satisfiable. Otherwise, the lemmas are conjoined to F and the loop continues until
either the formula becomes propositionally unsatisfiable or the theories are unable to
find inconsistency in the monome returned by PSat .

2 Handling quantifiers

When a formula contains quantifiers, usually the information expressed by the quanti-
fiers must be used in showing a formula is unsatisfiable. This section discusses some
basic notation and challenges for handling quantifiers. The main quantifier algorithm is
presented in Section 3.

2.0 Terminology

A quantified formula has the form ( δ x • F ) , where δ is either ∀ or ∃ . Quan-
tifiers can be arbitrarily nested. Provided all the bound variables have been suitably
α -renamed, the following three equations hold:

¬( δ x • F ) ≡ ( δ̄ x • ¬F )
( δ x • F ) ∧ G ≡ ( δ x • F ∧ G )
( δ x • F ) ∨ G ≡ ( δ x • F ∨ G )

Here ∀̄ = ∃ and ∃̄ = ∀ . By repeatedly applying the above three equations, we can
move all the quantifiers in a quantifier atom to the front and convert it to the prenex form
( δ1 x1 • ( δ2 x2 • . . . ( δn xn • F ))) , where F does not contain any quantifier.



The existentially bound variables in the prenex form can be eliminated by skolem-
ization. Skolemization replaces each existential variable x in the quantified body with
a term K (Ψ) , where K is a fresh function symbol that is unique to the quantified
formula and the existential variable x , and Ψ is the list of universally bound variables
that appear before x . The skolem term K (Ψ) is interpreted as the “existing term” deter-
mined by Ψ . We say the resulting purely universal formula is in canonical form. We use
Canon(Q) to denote the canonical form of a formula Q . Note that Q ⇒ Canon(Q)
is a lemma.

For any quantified formula C in canonical form and any substitution θ that maps
each universal variable to a ground term, we write C [θ] to denote the formula obtained
by taking C ’s body and applying θ to it.

2.1 Challenges in handling quantifiers

In order to reason about quantifiers, one can instantiate the universal variables with
some concrete terms. This will introduce new facts that contain boolean structures,
which cannot be directly used in the theory reasoning to refute the current monome.
Neither can one only rely on propositional reasoning to handle these new facts because
some inconsistency has to be determined by the theories. This means that in order to
reason about quantifiers, both propositional reasoning and theory reasoning are neces-
sary. This poses a challenge to theorem provers with lazy proof explication, where the
two are clearly separated.

One approach is to conjoin the original formula with lemmas of instantiating univer-
sal quantifiers. Let Q be a quantifier literal in a formula F and let θ be a substitution
that maps each universal variable in Canon(Q) to a concrete term. Then, the following
is a lemma for F :

Q ⇒ Canon(Q)[θ]

It is a lemma because Q ⇒ Canon(Q) and Canon(Q) ⇒ Canon(Q)[θ] are lemmas.
Conjoining these lemmas puts more constraints on the original formula. If the in-

stantiations are properly chosen, more inconsistencies can be detected and eventually
the formula can be shown to be unsatisfiable. Simplify [4] uses a matching heuristic
to return a set of instantiations that will likely be useful in refuting the formula. How-
ever, there may still be too many useless instantiations returned by the matcher. This
may blow up the SAT solver, because those lemmas can have arbitrary propositional
structure, causing more case splits.

The quantifier algorithm we present in this paper adopts a different approach. First,
the matching heuristic in Simplify is still used to return likely-useful instantiations.
Then, the little SAT solver performs the propositional reasoning for those instantiated
formulas. During the reasoning process, many new instantiations are generated, but
only some of them are relevant in refuting the monome. Once the monome is refuted,
our algorithm returns an appropriate lemma. The rationale of using the little SAT solver
is to separate the propositional reasoning for finding a satisfying monome from the
propositional reasoning for refuting a monome. Once a monome is refuted, many of
the instantiations are not useful anymore. Without this two-tier approach, they would



Input: monome m
Output: a set of lemmas P
procedure CheckMonome(m) ≡

Assert m to the theories ;
if (m is inconsistent with the theories) {

Theories output a lemma P that refutes m ;
} else {

Quantifier module generates lemmas P ;
}
return P ;

Fig. 1. CheckMonome algorithm in the one-tier technique.

remain in the formula and introduce many unnecessary case splits in the future rounds
of reasoning.

3 Quantifier algorithm

The quantifier reasoning is performed in the CheckMonome function in the algorithm
shown in Figure 0. We show the quantifier algorithm in two steps. In section 3.0, we
present the simple one mentioned in Section 2.1. In Section 3.1, we show how to use the
little SAT solver in CheckMonome to perform both propositional and theory reasoning.

3.0 One-tier quantifier algorithm

Figure 1 shows the CheckMonome algorithm with the simple quantifier support dis-
cussed in Section 2.1. We call this the one-tier quantifier algorithm. The quantifier mod-
ule is invoked only when the other theories cannot detect any inconsistency in the given
monome. As discussed in Section 2.1, the lemmas are generated by instantiating univer-
sal quantifications. The instantiations are returned from a matching algorithm similar
to that of Simplify. To avoid generating duplicate instantiations, the quantifier module
remembers the instantiations it has produced. When no more lemmas can be gener-
ated, CheckMonome will return an empty set, in which case the algorithm in Figure 0
will terminate with the result of True . To guarantee termination (at the cost of com-
pleteness), an implementation limits the number of times the quantifier module can be
called for each run of the theorem prover and simply return an empty set when the limit
is exceeded.

Unlike the lemmas output by the theories after discovering an inconsistency, the
lemmas generated by the quantifier module generally are not guaranteed to refute the
monome. There are two reasons for this. First, many inconsistencies involve both quan-
tifier reasoning and theory reasoning. Without cooperating with the other theories, the
lemmas returned by instantiating quantifiers alone may not be sufficient to proposition-
ally block the monome. Second, the instantiations returned by the matching algorithm



depend on the monome. Since instantiating quantifiers may produce more atoms to ap-
pear in a monome, it is possible that the matcher can provide the “right” instantiation
only after several rounds.

As a result of CheckMonome returning a set of lemmas insufficient to refute the
monome, the next round may call CheckMonome with the same monome, plus some
extra literals coming from the quantifier instantiation. This is undesirable, because the
SAT solver repeats its work to find the same monome again. A more serious problem
of this simple algorithm is that many of the returned lemmas are not even relevant in
refuting the monome. Those useless lemmas remain in the formula during the proving
process, and without removing them, the SAT solver will eventually be overwhelmed
by many unnecessary case splits.

3.1 Two-tier quantifier algorithm

In order to use quantifier instantiations to refute a monome, propositional reasoning is
needed. The key problem of the simple CheckMonome algorithm is: by directly return-
ing the lemmas generated from quantifiers, it essentially relies on the main SAT solver
to perform the propositional reasoning of those newly generated formulas. This causes
repetitive and unnecessary work in the main SAT solver. To address this problem, we
separate the propositional reasoning of the instantiated formula from that of the original
formula by using a little SAT solver in our CheckMonome algorithm (Figure 2).

Set P records all the lemmas generated so far. Some of the lemmas are generated
by the quantifier module (line 8), while the others are generated by the theories (line
6). When new lemmas are added into P , the little SAT solver performs propositional
reasoning on m ∧ P (line 14). For every satisfying assignment m ∧ m ′ produced by
the little SAT solver, the algorithm invokes the theories to check if the assignment is
consistent. To avoid redundant work, the algorithm checkpoints the state of the theories
before entering the loop (line 2). As a result, the algorithm only needs to assert m ′ to
the theories in each iteration (line 19).

The loop continues as long as P does not propositionally refute m and new lemmas
are still being generated. If no more lemmas can be generated, either by the quantifier
module or by the theories, and m ∧ P is still satisfiable, the algorithm terminates and
returns an empty set, indicating failure to refute monome m .

Once P can refute m , the function FindUnsatCore(m,P) is called to extract a
good-quality lemma from P . FindUnsatCore(F ,G) requires that F ∧ G is propo-
sitionally unsatisfiable. It returns a formula H such that G ⇒ H , F ∧ H is still
unsatisfiable, and the atoms in H all occur in F .

Function FindUnsatCore can be implemented in various ways. Modern SAT solvers
can extract a small unsatisfiable core of a propositional formula [13] and this seems to
be useful in FindUnsatCore . Alternatively, interpolants [9] may be used here, because
any interpolant of G and F satisfies the specification of FindUnsatCore(F ,G) .
For our preliminary experiments, we have the following naive implementation of the
FindUnsatCore function for the particular kind of arguments that show up in the al-
gorithm:

For a monome m and a formula P , if PSat(m ∧ P) = False , then there exists
a minimal subset m0 of m such that PSat(m0 ∧ P) = False . Such a m0 can be



Input: monome m
Output: a set of lemmas that can refute m , or ∅ when m is satisfiable

0. procedure CheckMonome(m) ≡
1. Assert m to theories ;
2. Checkpoint all theories ;
3. P := ∅ ;
4. loop {
5. if (the theories report inconsistency) {
6. Theories output a lemma P0 that refutes current monome ;
7. } else {
8. Quantifier module generates new lemmas P0 ;
9. if (P0 = ∅) {

10. return ∅ ;
11. }
12. }
13. P := P ∪ P0 ;
14. if (PSat(m ∧ P) = False) {
15. return FindUnsatCore(m,P) ;
16. }
17. let m ∧ m ′ be the satisfying monome ;
18. Restore checkpoints in all the theories ;
19. Assert m ′ to theories ;
20. }

Fig. 2. The CheckMonome algorithm using the two-tier technique.

obtained by trying to take out one literal from m at a time and discard the literal if the
formula remains propositionally unsatisfiable. It is easy to see that P ⇒ ¬m0 . We just
return ¬m0 as the result of FindUnsatCore(m,P) .

Correctness The correctness of the two-tier algorithm hinges on the fact that every
formula in P is a lemma for the monome m . The correctness of the algorithm is for-
malized as the following theorem.

Theorem 1 Let P be the set of all lemmas generated during the run of the algorithm.
Then, the algorithm refutes the monome m iff TSat(m ∧ P) = False .

Intuitively, the result of the algorithm is the same as if we had generated all the
lemmas P up front and run a standard Nelson-Oppen theorem prover on the formula
m ∧ P . Since conjoining lemmas does not change the satisfiability of a formula, the
theorem shows our algorithm to be sound:

Corollary 2 If the algorithm refutes m , then QSat(m) = False .

This is because ¬TSat(m ∧ P) ⇒ ¬QSat(m ∧ P) by Proposition 0, and QSat(m ∧
P) = QSat(m) by the definition of lemma. On the other hand, the algorithm is not
complete, since we cannot always generate all the lemmas relevant to the formula.



When the algorithm fails to refute a monome, all that is known is TSat(m ∧ P) =
True , that is, even with all the information in P , a Nelson-Oppen theorem prover can-
not refute the monome either.

4 Example

In this section, we demonstrate how our algorithm works on a small example.
Let P and Q be two quantified formulas:

P : (∀ x • x < 10 ⇒ R(f (x )) )
Q : (∀ y • R(f (y)) ⇒ S (g(y)) )

where the match patterns to be used for P and Q are x : f (x ) and y: g(y) , respectively.
A pattern ρ is a lambda term such that if a subterm t of the formula matches it, i.e.
∃t0.t = ρ(t0) , t0 will be used to instantiate the universal variable ρ is associated with.
In our current implementation, the patterns are specified by the user, although they
could be automatically inferred in most cases. We now trace our algorithm through the
request of determining whether or not the following formula is satisfiable:

[[P ]] ∧ [[Q ]] ∧ ([[b = 1]] ∨ [[b = 2]]) ∧ ¬[[S (f (b))]] ∧ ¬[[S (g(0)]])

In the first round, the main SAT solver returns a monome m , say

{ [[P ]], [[Q ]], [[b = 1]], ¬[[S (f (b)]]), ¬[[S (g(0)]]) }
Since no theory can detect inconsistency, the quantifier module is invoked to gener-
ate lemmas. According to the match pattern, x is instantiated with b in P and y is
instantiated with 0 in Q :

(2)[[P ]] ⇒ ([[b < 10]] ⇒ [[R(f (b))]])
(3)[[Q ]] ⇒ ([[R(f (0))]] ⇒ [[S (g(0))]])

The lemmas (2) and (3) are conjoined to the monome and the little SAT solver is called.
The extended monome m ′ for the newly-introduced atoms might be:

{ ¬[[b < 10]], ¬[[R(f (0))]] }
At this point the theories detect an inconsistency between [[b = 1]] and ¬[[b < 10]] . So
a new lemma is added:

[[b = 1]] ∧ ¬[[b < 10]] ⇒ False (4)

In the next iteration, m ′ is

{ [[R(f (b))]], ¬[[R(f (0))]] }
The theories are unable to detect inconsistency in the monome m ∧ m ′ . The quantifier
module is invoked again to generate lemmas. This time the term f (0) in the newly
generated formulas matches the pattern, so x in P is instantiated by 0 .

[[P ]] ⇒ ([[0 < 10]] ⇒ [[R(f (0))]]) (5)



one-tier two-tier
formula SAT solver main SAT little SAT FindUnsatCore

case splits case splits case splits case splits
ex2 7 1 1 9
ex9 44 9 3 23
ex100 428 106 2 104
prog.1.1 116 0 116 51
prog.2.2 547 4 491 277
prog.3.4 1919 13 1505 919
prog.3.4.err 2000 11 1312 218

Fig. 3. Results from running some preliminary experiments, showing the number of SAT solver
case splits performed by the one-tier and two-tier approaches on some small examples.

The next m ′ is

{ [[R(f (b))]], ¬[[R(f (0))]], ¬(0 < 10) }
The theory then detects an inconsistency:

¬(0 < 10) ⇒ False (6)

After conjoining (6), the original monome m will be propositional refuted. The lemma
constructed is

[[P ]] ∧ [[Q ]] ∧ ¬[[S (g(0))]] ⇒ False

After conjoining this lemma to the original formula, it becomes propositionally unsat-
isfiable.

If we use the simple algorithm, lemma (2) would be conjoined to the input formula,
even though it has nothing to do with the contradiction. In the subsequent solving, this
unnecessary lemma could introduce a case split on ([[b = 1]] ∨ [[b = 2]]) , if the SAT
solver happens to assign [[b < 10]] False. The theories would have to consider both
in order to block the truth value assignment ¬[[b < 10]] . By separating the two SAT
solvers, our algorithm only needs to consider one of them.

5 Experimental results

We have implemented the two-tier quantifier algorithm in a lazy-proof-explication the-
orem prover in development at Microsoft Research. For a comparison, we also imple-
mented the one-tier algorithm. This section describes the results from our preliminary
evaluation of the algorithm.

Figure 3 shows the number of SAT-solver case splits required for some small ex-
amples. In addition to showing the case splits by the main and little SAT solvers in the
two-tier approach, we show the number of case splits performed by our implementation
of FindUnsatCore . We used two sets of examples, explained next.



/* axioms about operations that read and write the heap */
( ∀ h, x , F , y ,G, a • x �= y ∨ F �= G ⇒

sel(upd(h, x ,F , a), y ,G) = sel(h, y ,G) ) ∧
( ∀ h, x , F , a • sel(upd(h, x , F , a), x ,F ) = a ) ∧

/* fields names are distinct (only two distinctions are needed for this example) */
f �= g ∧ g �= alloc ∧

/* object invariants hold initially, where H is the name of the heap */
( ∀ o • o �= null ∧ is(o,T ) ∧ sel(H ,o, alloc) ⇒ sel(H , o, f ) < 7 ) ∧

/* encoding of the call, where K is the name of the heap in the post-state */
( ∀ o,F • sel(H ,o, F ) = sel(K ,o,F ) ∨

(o = p ∧ F = g) ∨ (o = p ∧ F = f ) ∨
¬sel(H , o, alloc) ) ∧

( ∀ o • sel(H , o, alloc) ⇒ sel(K , o, alloc) ) ∧
( ∀ o • ¬sel(H , o, alloc) ∧ sel(K , o, alloc) ⇒ sel(K , o, f ) < 7 ) ∧
sel(K , p, f ) = 3 ∧

/* the (negation of the) postcondition to be proved */
¬( ∀ o • o �= null ∧ is(o,T ) ∧ sel(K , o, alloc) ⇒ sel(K , o, f ) < 7 )

Fig. 4. A formula showing a typical structure of verification conditions of methods in an object-
oriented program.

The first set of formulas was designed to show how the two-tier approach can save
case splits over the one-tier approach. Formula ex2 is the example from Section 4, and
ex9 and ex100 are the same example but with 9 and 100 different disjuncts instead
of 2. The number of case splits for these examples (Figure 3) confirm that the two-tier
approach can indeed reduced the number of case splits.

The second set of formulas was constructed to look like (the negations of) typical
verification conditions of method bodies in an object-oriented program (cf. [8, 0]): on
entry to the method body, one gets to assume that an object invariant holds for all
allocated objects; on return from the method, one needs to show that the object invariant
holds for all allocated objects; in between, the method body contains control structure
and calls to other methods. In our example, we used an object invariant that puts an
integer constraint on a field f of objects. In our example, the method body to be verified
makes calls of the form p.M (x ) , where p is some object and x is an integer. The
semantics of the calls come from the specification of the callee. We used a specification
for M that says that p.M (x ) sets the field p.f to x , arbitrarily assigns to the field p.g ,
and allocates an arbitrary number of objects and changes the fields of those objects in
arbitrary ways that satisfy the object invariant.

Formula prog.1.1 is (the negation of) the verification condition for a method whose
body simply calls p.M (3) . It is shown in Figure 4. Formulas prog.2.2 and prog.3.4
are similar, but correspond to method bodies containing 2 and 4 calls (with various pa-
rameters) and with if statements that give rise to 2 and 3 execution paths, respectively.
Formula prog.3.4.err corresponds to the same program as prog.3.4 , but with an in-
serted program error; thus, prog.3.4.err is the only one of our small formulas that is
satisfiable.



Since prog.1.1 is a straight-line program, there are no case splits to be done by the
main SAT solver, so the little SAT solver performs roughly the same work as the SAT
solver in the one-tier approach. Verification conditions produced from method bodies
with more than one possible control-flow path contain disjunctions at the top level of the
formula. As soon as there are such disjunctions in our examples, the two-tier approach
performs fewer case splits not just in the main SAT solver, but in the main and little
SAT solvers combined.

When the two-tier approach refutes a monome produced by the main SAT solver, the
lemma returned to the main SAT solver has been pruned to contain a minimal number
of literals. This keeps the state of the main SAT solver small, but the pruning has a price.
The pruning may be done directly by the SAT solver, but our implementation performs
the pruning using the FindUnsatCore function described above. Figure 3 shows that
this function performs a rather large number of case splits. We do not yet know the
actual cost of these case splits relative to everything else in our implementation.

6 Discussion

6.0 Detecting useful quantifier instantiations

The two-tier technique separates the propositional reasoning of the input formula from
the propositional reasoning of the quantifier instantiations. By doing so, this technique
prevents useless instantiations from blowing up the propositional search of the input
formula. However, it is possible for some instantiations to be repeatedly useful in refut-
ing many propositionally satisfying assignment of the input formula. In such cases, it
could be advantageous to expose this instantiation to the main SAT solver.

As an example, consider the following input formula:

[[(∀ x • P(x ) ⇒ x � a )]] ∧ [[P(2)]] ∧ ([[a = 0]] ∨ [[a = 1]])

Suppose the main SAT solver picks a satisfying assignment consisting of the first two
conjuncts and the disjunct [[a = 0]] . The following instantiation

[[(∀ x • P(x ) ⇒ x � a )]] ⇒ [[P(2)]] ⇒ [[2 � a]]

is sufficient to refute the current satisfying assignment. Consequently, the two-tier tech-
nique returns the following lemma:

[[(∀ x • P(x ) ⇒ x � a )]] ∧ [[P(2)]] ⇒ ¬[[a = 0]]

However, the instantiation above is also sufficient to refute the (only) other satisfying
assignment of the input formula.

If it is possible to detect such reuse of instantiations, the algorithm can expose these
instantiations to the main SAT solver. We are currently exploring different heuristics to
identify such useful instantiations.



6.1 Handling non-convex theories

For efficiency, it is best if theories combined using Nelson-Oppen are convex. Infor-
mally, a convex theory will never infer a disjunction of equalities without inferring one
of them. Thus the decision procedures only need to propagate single equalities. For
non-convex theories, sometimes it is necessary for the decision procedure to propa-
gate a disjunction of equalities. For example, the integer arithmetic theory can infer the
following fact:

0 � x ∧ x � 3 ⇒ x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3.

This fact should be added as a lemma in the proving process. Like the lemmas generated
by quantifier instantiation, there is a risk that useless lemmas increase the work required
of the propositional search. The same technique discussed in this paper is readily ap-
plied to those non-convex theories. In this sense, our algorithm in Figure 2 actually
provides a unified approach to handle both quantifiers and non-convex theories—they
can both be viewed as a theory that can generate lemmas of arbitrary forms.

7 Related work

Among decision-procedure based theorem provers, besides our work, Simplify [4], Ver-
ifun [6], and CVC Lite [1] all provide some degree of quantifier support.

Simplify’s method of using triggering patterns to find instantiations [10, 4] has
proved quite successful in practice. Once an instantiation is generated, it remains in
the prover until the search backtracks from the quantifier atom. We implemented a sim-
ilar triggering algorithm and used a second SAT solver to reason about the instantiated
formulas so that useful instantiations can be identified.

Our handling of quantifiers is based on Verifun’s early work [7]. Some attempts
have been made in Verifun to identify useful lemmas from instantiations of quantifiers.
However, it seems that it is an optimization that works only when the instantiations
alone can propositionally refute the current monome. In most scenarios, we believe, the
quantifier module needs to cooperate with other theories to find out the instantiations
that are useful to refute the monome.

In CVC Lite, each term is given a type and the formula is type checked. Types
give hints about which terms can be used to instantiate a universal variable. However,
instantiating a variable with every term whose type matches may be unrealistic for large
problems.

Apart from the decision-procedure based theorem provers that rely on heuristic in-
stantiations of quantified formulas, many automated first-order theorem provers includ-
ing the resolution-based theorem provers (such as Vampire [12]) and the superposition
theorem provers (such as HaRVey [3]) can handle quantifiers.

8 Conclusion

In this paper, we have proposed a two-tier technique for handling quantifiers in a lazy-
proof-explication theorem prover. The propositional reasoning of the original formula



and that of the instantiated formulas are handled by two SAT solvers. The major pur-
pose of this separation is to avoid unnecessary case splits caused by intertwining useless
instantiations and the original formula. The FindUnsatCore method can extract, from
a set of lemmas generated during quantifier reasoning, a “good lemma” that is both
relevant to the problem and sufficient to refute the given monome. We also use check-
pointable theories to improve efficiency during the quantifier reasoning.
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