
Amandroid: A Precise and General Inter-component Data
Flow Analysis Framework for Security Vetting of Android
Apps

FENGGUOWEI, University of South Florida

SANKARDAS ROY, Bowling Green State University

XINMING OU, University of South Florida

ROBBY, Kansas State University

We propose a new approach to conduct static analysis for security vetting of Android apps, and built a general

framework, called Amandroid for determining points-to information for all objects in an Android app in a flow

and context-sensitive (user-configurable) way across Android apps components. In particular, Amandroid

performs data flow and data dependence analysis for each component of the input app. Amandroid also tracks

the inter-component communication activities. Amandroid can stitch the component-level information into

the app-level information to perform intra-app and inter-app analysis. In this paper, (a) we show that the

aforementioned type of comprehensive app analysis is completely feasible in terms of computing resources

with modern hardware, (b) we demonstrate that one can easily leverage the results from this general analysis

to build various types of specialized security analyses – in many cases the amount of additional coding needed

is around 100 lines of code, and (c) the result of those specialized analyses leveraging Amandroid is at least on

par and often exceeds prior works designed for the specific problems, which we demonstrate by comparing

Amandroid’s results with those of prior works whenever we can obtain the executable of those tools. Since

Amandroid’s analysis directly handles inter-component control and data flows, it can be used to address

security problems that result from interactions among multiple components from either the same or different

apps. Amandroid’s analysis is sound in that it can provide assurance of the absence of the specified security

problems in an app with well-specified and reasonable assumptions on Android runtime system and its library.

1 INTRODUCTION
The Android smart-phone platform is immensely popular and has by far the largest market share

among all types of smartphones worldwide. However, there have been widely reported security

problems due to malicious or vulnerable applications running on Android devices [12, 20, 25, 31,

36, 41, 43, 45, 49, 55, 56].

Many security problems of Android apps can be discovered by static analysis on the Dalvik

bytecode of the apps, and there have been a number of earlier efforts along this line [5, 7, 9, 11,

18, 24, 29, 30, 33, 37, 42, 44, 47, 51, 54, 56]. Compared with dynamic analysis, static analysis has

the advantage that a malicious app cannot easily evade detection by changing their behaviors in a

testing environment, and it can also provide a comprehensive picture of an app’s possible behaviors

as opposed to only those that manifest during the test run. Due to the inherent undecidability

nature of determining code behaviors, any static analysis method must make a trade-off between

computing time and the precision of analysis results. Precision can be characterized as metrics on:

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

A missed behaviors (app behaviors missed by the analyzer that may present security risks,

also referred to as false negatives), and

B false alarms (behaviors that an app does not possess but the analyzer fails to rule out, also

referred to as false positives).

Android Static Analysis Challenges: A practical challenge in static analysis is to control the rate

of false alarms while not missing any (potentially dangerous) behaviors of apps. This is especially

significant due to a number of features of Android.

(1) Android is an event-based system. The control flow is driven by events from an app’s

environment that can trigger various method calls. How to capture all the possible control

flow paths in this open and reactive system while not introducing too many spurious paths

(false alarms) is a significant challenge.

(2) The Android runtime consists of a large base of library code that an app depends upon. The

event-driven nature makes a large portion of the control-flow involve the Android library.

While fully analyzing the whole library code could improve the analysis’ faithfulness, it

may also be prohibitively expensive (or imprecise).

(3) Android is a component-based system and makes extensive use of inter-component com-

munication (ICC). For example, a component can send an Intent to another component. The

target of an Intent could be specified explicitly in the Intent or be implicit and decided at

runtime. Both control and data can flow through the ICC mechanism from one component

to another. Capturing all ICC flows accurately is a major challenge in static analysis.

Prior research has attempted to address some of the above challenges. For example, FlowDroid [5,

22] formally models the event-driven life cycle of an Android app in a “dummyMain” method, but

it does not address ICC. Epicc [33] statically analyzes Intent and uses an IDE [39] framework to

solve for Intent call parameters, but does not link the Intent call sources to targets and does not

perform data flow analysis across component-boundaries. CHEX [30] uses a different approach to

the modeling of the Android environment, by linking pieces of code reachable from entry points

(called splits) as a way to discover data flows between the Android application components, but

it does not address data flow through Intent channels. IccTA [29] extends FlowDroid, which can

track data flows through regular Intent calls and returns. However, IccTA is yet to track a special

category of ICC named remote procedure call (RPC) that invokes a method in a bound service

component. DroidSafe [24] attempts to track both Intent and RPC calls. It performs an app-level

analysis with flow-insensitive points-to information. All of these prior works have inspired our

work. We designed and built Amandroid1 – an component-based data flow analysis framework

tailored for Android apps. The executable and source of Amandroid are publicly available.
2

The main contributions from Amandroid are:
(1) Amandroid computes points-to information for all objects and their fields at each program

point and calling context. The points-to information is extremely useful for analyzing a

number of security problems that have been addressed in prior works using customized

methods. Amandroid can be used to address these wide-range security problems directly

with very little additional work. We also show that such comprehensive analysis scales to

large apps.

(2) As part of the computation of object points-to information, Amandroid can build a highly

precise inter-procedural control flow graph (ICFG) of an app component , which is both

flow and context-sensitive [32]. This is a side benefit of our approach compared to prior

1
Aman means safe/secure in the Indonesian language.

2
Amandroid is available at http://pag.arguslab.org/argus-saf with new name Argus-SAF (Argus Static Analysis Framework).

works that have adopted existing static analysis frameworks (e.g., Soot [46] and Wala [21]),

which build ICFG with less precision [28, 48].

(3) For each app component, Amandroid builds a Data Flow Graph (DFG), which consists of

the component’s ICFG together with each node’s (in ICFG) reaching (points-to) fact set.

Then, Amandroid builds the data dependence graph (DDG) for each app component from

its DFG. Furthermore, for each app component Amandroid builds a summary table (ST)
listing its inter-component communication (control and data flow) activities over multiple

channels, such as Intent, RPC, static fields and others. Amandroid is able to conduct

an elementary string analysis (due to its object-sensitivity) for inferring Intent/RPC call

parameters, and finds the correspondence between an ICC source and the ICC targets based

on a flow/context-sensitive matching algorithm. Using STs of multiple apps with multiple

components, Amandroid can stitch the component-level DDGs into an app-level DDG to

perform intra-app and inter-app analysis.

(4) An analyst can add a plugin on top of Amandroid to detect the specific security problem

he/she is interested in. Through extensive experimentation, we demonstrate that a variety

of security problems can be reduced to querying DFGs and DDGs.

We evaluated Amandroid on 4,600 real-world apps (2,300 Google Play apps shared by the

AndroZoo [3] group, and 2,300 malicious apps from the AMD dataset [50]). Our experimental

results show that Amandroid scales well. We used Amandroid to address security problems such as

data leakage (e.g., SMS message leakage), injection (e.g., intent injection), and misuse/abuse of APIs

(e.g., to hide app icon). The core framework of Amandroid takes serveral minutes to analyze one

app on average. All the specialized analyses require very little additional coding effort (around 100

LOC) to leverage Amandroid’s DFGs and DDGs to address the specific problem, and the additional

running time is negligible (typically in the order of tens of milliseconds).

We then experimentally compare Amandroid with two state-of-the-art static analyzers for

Android apps: IccTA [29] and DroidSafe [24], and show that Amandroid can address a wide range

of security problems due to inter-component communications. Amandroid also found multiple

crucial security problems in Android apps that were never reported before in the literature.

Organization. The rest of the paper is organized as follows. Section 2 gives a motivating example.

Section 3 describes in detail Amandroid’s analysis methods. Section 4 presents Amandroid’s

component-based analysis model. We discuss implementation details in Section 5, experimentation

of our approach in Section 6, and related research in Section 7.

2 MOTIVATING EXAMPLE
A malicious app can conduct bad behaviors by leveraging the design (e.g., event-driven and inter-

component nature) of Android system and try to obfuscate its true objectives. Figure 1 shows an

example app (named “IMEI-leaking”), which consists of a few components while each one is a

separate Java class. We note that Android apps are component-based where each component is

an independent entity and is typically responsible for a specific task. For instance, an Activity
component implements the UI of the app, a Service component typically performs a long-running

task on the background, and a Broadcast Receiver component receives a broadcast message

from one component (or the system) and takes certain actions, and more.

An Android app does not have a “main” method; rather, components are invoked through the

various callback methods (including lifecycle methods). Depending on the events, the system invokes

the lifecycle methods of the components. It also remembers the recently sent intents and passes

them around, which can be abstracted in a component-level environment. Furthermore, there

can be control flows and data flows among the app components through the Android system. For

comprehensive analysis, the app analyzer tool needs to track such control and data flows.

As an example, the following sequence of events (as labeled in Figure 1) can happen in reality:

(1) FooActivity starts BarActivity (via “startActivityForResults" API) and waits for Bar-
Activity to send back some result.

(2) When the user clicks on a button of BarActivity screen, the onClick method is triggered.

(3) BarActivity makes an RPC (Remote Procedure Call) call getImei() to a Service component

named MyService, and MyService returns an inner field (which has already possibly stored
the IMEI Id) to BarActivity.

(4) BarActivity sends back an intent (via setResult API), which contains the IMEI Id.
(5) Android system invokes onActivityResultmethod of FooActivitywith the above intent

as a parameter, and the IMEI Id is extracted and leaked (to the attacker) through a SMS

message.

To track the data and control flow inside a component, a static analyzer needs a model of the

Android system to track invocation of the callback methods including the component lifecycle

methods as illustrated in the above example. Our model of the Android environment is inspired by

FlowDroid [5, 22], which uses a “dummyMain” method to capture all possible sequences of lifecycle

method invocations as followed in Android. However, unlike an app-level environment model

used in FlowDroid, we design a component-level environment model. The motivation behind the

component-level model choice is that Android apps work in this way.

Furthermore, we need to track data and control flow through each type of inter-component

communication channel (e.g., Intent, RPC, etc.). As an example, when BarActivity sends out

an intent i3 via setResult() API, the Android system invokes onActivityResult method of

FooActivity with i3 (i.e., data = i3) as a parameter. The reason for the above action is that

FooActivity has started BarActivity before with the startActivityForResults() API. To

track the control and data flow involved in such a “stateful" ICC (inter-component communication)

mechanism, the analyzer tool needs to remember which Activity has started a given Activity A.
Another challenge for the analyzer tool is how to track the RPC channel, if any. As an example,

when BarActivity invokes the getImei() method, the analyzer tool has to map the call to the

corresponding method of MyService component. BarActivity receives some data flow as the

return from the call. Furthermore, MyService might have been running already before this RPC

takes place and has stored the IMEI Id in field imei1 (e.g., because another RPC method setImei()
got invoked by others), and the getImei() call returns the sensitive information from imei1
to BarActivity. This shows that the analyzer tool needs to address the re-entry nature of the

component code. In addition to the above channels of communication among app components, two

components can also exchange data via static variables and more. So, the app analyzer tool needs

to track these channels too.

3 THE AMANDROID APPROACH
Figure 2 illustrates the pipeline of Amandroid’s main steps:

(1) Amandroid converts an app’s Dalvik bytecode to an intermediate representation (IR)
amiable to static analysis.

(2) It generates an environment model that emulates the interactions of the Android System

with the app.

(3) Amandroid does a component-based analysis. In particular, for each component of the app,

it builds a data flow graph (DFG). Note that DFG includes the control flow graph of the

Fig. 1. The IMEI-leaking App: The arrowed lines among the app components highlight some of the inter-
component-communication.

Fig. 2. The Amandroid Analysis Pipeline

component plus the points-to information. Furthermore, Amandroid builds the component-

level data dependence graph (DDG) on top of the DFG, which implies explicit information

flow. Amandroid also builds a summary table (ST) documenting the component’s possible

communication channel with other components. Later, if necessary, an app-level DDG is

built by stitching together the individual components’ DDGs.
(4) Amandroid then can be applied in various types of security analysis using the information

presented in DFGs and DDGs. For example, one can use DDG to find whether there is any

information leakage from a sensitive source to a critical sink by querying whether there is

a data dependence chain from source to sink.

3.1 IR Translation
Amandroid decompresses the input app apk file, retrieves a dex file, and coverts it to an IR format

for subsequent analysis. We wrote an translator dex2IR that takes as input the dalvik bytecode of

an Android app, and outputs the program in our IR format. dex2IR is based on the open-source

tool baksmali [8].

3.2 Environment Modeling
An Android app is not a closed system; the Android system provides an environment in which

the app runs. The code that may execute during the lifetime of an app is not all present in the

app’s package. The Android system (which includes the Android runtime) does a bulk of the

work in addition to that by the app’s code. With the “IMEI-leaking” app example in Section 2, we

demonstrated that a static analyzer needs to model the Android system to analyze the system-

defined control flows in the app
3
. Our modeling of the Android environment follows that of

FlowDroid [5, 22] with a few crucial extensions described below.

Algorithm 1 Generating the Environment Method of Component C

Input: The name of the component C, manifest file, resource files, IR of C.
Output: C’s environment method, Env_C
1: procedure GenEnv(C)
2: create a method Env_C having one parameter Intent i, and an empty body;
3: callBacks ← collectCallbacks(C);
4: add callBacks into the body of Env_C in the proper sequence emulating the reality;

5: return Env_C;

6: procedure collectCallbacks(C)
7: callBacks ← empty Set;
8: while fixed-point is not reached do
9: perform reachability analysis to mark methods that are reachable from C
10: collect callBacks from the XML-resource files, if any

11: collect interface-based callbacks as registered in C’s source code
12: collect other callbacks (system methods that are overridden) in C’s source

13: return callBacks;

In Android, numerous types of events (e.g., system events, UI events, etc.) can trigger callback

methods defined in an app. As an example, while an Activity A is running, if another Activity B
comes to the foreground, it is considered an event. This event can trigger A.onPause, which is either

defined in the app’s code, or in the Android framework if the developer did not override the default

method. There are seven important life-cycle methods of an Activity: onCreate, onPause, onResume,
etc.; they each represent a state in the transition diagram of the life cycle. Android documentation

specifies other states such as Activity running and Activity shut down. Similarly, other types

of components (e.g., Service, Broadcast Receiver, etc.) have a well-defined life cycle involving

multiple life-cycle methods.

Amandroid introduces component-level models instead of FlowDroid’s whole app-level model.

The environment of a component C represents a main method, Env_C, which takes as parameter

an incoming intent i and invokes C’s life-cycle methods (e.g., onCreate, onBind, or onReceive)
based on C’s type (Activity, Service, Broadcast Receiver, etc.) and other callback methods (e.g.,
onLocationChanged) so that all possible paths are included. This component-level model is more

effective in capturing the impact of the Android system on both the control and data of an app’s

execution. We have a dedicated environment for each component that invokes the set of callback

methods implemented in the component; this is the control part of modeling Android’s environment.

3
The alternative is to fully analyze the whole Android system’s code, which is both expensive and unnecessary as also

observed by others [22, 24, 29, 30].

In addition, the environment also keeps tracks of the intents received by the component (e.g.,
Environment of BarActivity remembers the intents sent to start BarActivity) so that the intents
could be made available when necessary (e.g., to serve getIntent() at L38 in the BarActivity
component); this is the data part of modeling Android’s environment. Env_C also passes the intent

parameter when necessary for other relevant methods (e.g., onReceive of a Broadcast Receiver).

Amandroid generates the Environment Method (Env_C) of each component C in the app auto-

matically. Algorithm 1 shows the pseudocode for generating Env_C of a component C. As the first
step, an empty method with an Intent i as the parameter is generated. (Note that Intent i typically
represents the Intent which starts the component – for instance, e.g., the parameter of Environment

Method of BarActivity is basically the intent that starts BarActivity) Then, we collect basic
information from the resource files in the apk and uses this information to collect layout callback

methods. We then generate the body of Env_Cwith lifecycle methods based on the type of C. Finally,
we collect other callback methods (e.g., onLocationChanged) in C (through a reachability analysis)

in an incremental fashion (following the FlowDroid [5] approach). All of these are done before

performing the data flow analysis as discussed in Section 3.3 and Section 4.1.

3.3 Component-Based Analysis
Android is a component-based system, and hence analyzing the code at the component level fits

more to the nature of Android applications. The example in Section 2 illustrates how data-flows

can happen inside one component and across multiple components.

Amandroid takes each component’s environment method as an entry point of analysis, and

performs data-flow analysis as well as data dependency analysis.

For each component C that is reachable from outside, Amandroid builds a data flow graph (DFG).
DFG includes the control flow graph spanning over all the reachable methods of C; it also tracks

the set of object creation sites that reach each program point (thus, Amandroid knows the dynamic

types of objects flowing to any particular program point, and where they were created and modified

along the way). Then, Amandroid builds the data dependence graph (DDG) on top of the DFG,
which implies explicit information flow. Amandroid also builds a summary table (ST) documenting

the component’s possible communication channel with other components. Later, when necessary,

an app-level DDG is built by stitching together the individual components’ DDGs. The detailed
discussion and algorithm of how to perform those analyses, and the uses of such results will be

presented in Section 4.

3.4 Using Amandroid for Security Analyses
Amandroid provides an abstraction of the app’s behavior in the forms of DFGs and DDGs. We now

discuss how they can be easily used for a number of useful security analyses.

3.4.1 Data Leak Detection. One important problem in app vetting is to find whether an app may

leak any sensitive data. Examples of sensitive data include user-login credentials (e.g., password),
location information, and so on. This can be performed through standard data dependence analysis

using the DDG. Given a source and a sink, one can find whether there is a path from source to sink

in the DDG. For instance, prior research [6, 22] has documented a list of security-critical source and

sink APIs, which can be used here. One could also customize the definition of the source and sink

for the specific problem at hand. DDG can only capture explicit information leaks. For information

leaks through controls (e.g., leaking conditionals through the branches) one would need to build a

control dependence graph, which can be obtained from the DFGs through the standard process [4].

Amandroid can perform a comprehensive analysis since it captures control and data flows

across the component boundaries through Intent channel, RPC channel, and others so that security

problems like the one shown in Figure 1 can be captured.

3.4.2 Data Injection Detection. An app can have a vulnerability which allows an attacker to inject
data into some internal data structures, leading to security problems. Researchers [30] identified a

subclass of this vulnerability called intent injection. The attacker can send an ill-crafted intent to a

public component of a vulnerable app, which retrieves data from the incoming intent and uses it

for security-sensitive operations. For instance, the app’s logic can be such that the incoming intent

determines the destination of a critical data flow — the URL of a backup server, the name of a file,

the destination component of an ICC call, phone number of an outgoing SMS, or others. As a result,

the attacker will be able to control the destination, which can lead to serious security problems.

Amandroid can detect this vulnerability using the DDG, by defining the source as the possible

entry point of attacker-controlled data (e.g., a public-facing interface), and the sink being the critical
parameters of the security-sensitive operations. If a data-dependency path exists between the

source and the sink, the attacker can potentially manipulate the parameters of the security-sensitive

operations.

3.4.3 Detecting Misuse/Abuse of APIs. Another critical part of security vetting is to find if the

developer (intentionally or unintentionally) has used a library API in an improper way, which may

lead to security problems. Past research has applied static analysis to identify misuse of Crypto

APIs [16] and SSL APIs [19]. The main idea is to detect if the app satisfies a set of rules on proper

use of the APIs. For example, if the parameters for calling the AES encryption method have certain

values the cipher will run in the insecure ECB mode. Amandroid can verify these rules by checking

the possible values of the parameter objects in a relevant API call by querying the DFGs.

4 COMPONENT-BASED ANALYSIS
An Android app might have multiple components while the components can communicate with

each other via various channels: Intent, RPC, static field, etc. Thus security sensitive data items can

also flow through these channels. Moreover, in an inter-app communication, one component of

app X interacts with one component of app Y; hence, communication across different apps can be

considered as inter-component communication. Thus our approach considers the component-based

analysis as the basic building block for app vetting. We do both intra- and inter-component analysis

(covering both intra-app and inter-app analysis, if necessary).

Determining object points-to information is a core underlying problem in almost all static analyses

for Android app security, such as finding information leaks, inferring Intent calls, identifying

misuse of certain library functions, and others. Instead of addressing each of these problems using

different specialized models and algorithms, it is advantageous to pre-calculate all object points-to
information at once, and use this as a general framework for different types of further analysis.

This way the cost of computing points-to information is amortized across the large number of

specialized analyses one will likely need to perform on a given app.

Existing off-the-shelf static analysis tools such as Soot [46] (used by FlowDroid [5, 22] and

Epicc [33]) and Wala [21] (used by CHEX [30]) have not provided capability of calculating all

objects’ points-to information in a both flow and context-sensitive way [28, 48]. This is due to

concerns about computation cost. However, with the advancements in hardware (e.g., many-core

machines), it opens new possibilities to perform a more precise analysis.

Generally speaking, the core task of Amandroid’s analysis is aimed to build a precise inter-

procedural data flow graph (DFG). The flow-sensitive and context-sensitive data flow analysis

to calculate object points-to information is done at the same time with building inter-procedural

control flow graph (ICFG). This is because in order for one to precisely know the implementation

method of a virtual method invocation, one needs to know the receiver object’s dynamic type;

conversely, flow-sensitive data flow analysis requires one to know how the program control flows.

Thus, there is a mutual dependency between the two analyses. Such integrated control and data

flow analyses approach has been demonstrated to be both practical and effective for even analyzing

temporal properties of concurrent Java programs including the standard Java library codebase [15].

However, [15] does not keep track of method calling context (typically termed monovariant calling
context analysis or 0-calling context [32]). We generalize the approach to precisely track the last k
calling contexts (polyvariant [32], a.k.a. k-limiting where k is user-configurable and the additional

calling context beyond k is monovariant).

Our analysis approach consists of the following phases: (1) Build data flow graph (DFG) for each
component; (2) Build data dependency graph (DDG) for each component; (4) [Optional] Perform

inter-component analysis.

4.1 Component-Level Data Flow Graph
Amandroid computes points-to facts for each statement. In the component-based analysis, we build

the DFG of each component of an app. Due to space constraints, the description (including the

algorithm and an example) of the basic DFG building process is presented in Appendix only. Below

we introduce the notations in DFG and use the example app (ref. Figure 1) of Section 2 to explain

its semantics. Figure 3 illustrates part of the resulting DFGs of the components in the example app.

4.1.1 Notations. There are two sets of facts associated with each statement: the set of facts

entering into a statement s is called the entry set of s (or just entry (s)); the set of facts exiting a

statement s is called the exit set of s (or just exit (s)). Statement s may change entry (s) by killing stale
facts (kill (s)) and/or generating new facts (gen(s)). The gen and kill sets can be calculated using

flow functions that are based on s’ semantics. In general, the flow equations have the following

forms.

exit (s) = (entry (s) \ kill (s)) ∪ gen(s) (1)

Amandroid keeps track of points-to facts, which provide information about what objects a variable

(register in Dalvik), an object field, or an array element may point to at a particular program point.

A points-to fact has the general form of ⟨lhs, rhs⟩.
The rhs may refer to either an object or an aggregate (usually key-value pairs). Objects are dy-

namically allocated in the Dalvik VM heap space at object creation sites (through a “new” statement).

In our IR, each statement in the program is assigned a unique location number N (represented

as LN). We use this number to represent the fresh object created at the location, and refer to it as

instance N. For example, (in Fig 3) location L6 generates the points-to fact ⟨i1, 6⟩. Here 6 represents
instance 6, the object created at location L6. From the object creation site we can directly find the

precise runtime type of the instance.

Let us use □N to indicate any possible value that is type compatible with the received objects at

location N . For instance, for objects returned from inter-component communication such as RPC,

we do not know the possible values that will be received from the communication. As an example,

location L37 generates a points-to fact ⟨imei2, □37⟩, indicating that the string variable imei2 points
to an object that is returned from the RPC call at location L37. A tuple-instance, like (“key”, □37)
in the entry set of L40, denotes a key-value pair.

There are two types of lhs of a points-to fact, yielding two types of facts. A variable-fact is when
the lhs is a variable. A heap-fact is when the lhs is an object field or an array element. For example,

Fig. 3. DFGs and STs of the components in App “IMEI-leaking”: An excerpt

location L7 generates a heap-fact ⟨(6, mComponentName), (“BarActivity”)⟩, meaning that the field

mComponentName of instance 6 points to the string “BarActivity”.

4.1.2 Modeling Library and Native Calls. Android has a large number of library APIs (that an

app can call) some of which are implemented natively. Similarly, an app developer may choose

to natively implement some functionality (e.g., for performance reasons). Amandroid does not

analyze native code; thus, we need to provide models for native methods that summarize how

the data flow facts may be changed. For library APIs that have well-understood simple semantics,

one can summarize them as flow functions (gen and kill). Besides native methods, we also provide

models for non-native library methods that are frequently used; this is useful to scale the analysis.

In general, Amandroid adopts the following strategy in modeling Android library functions and

native methods:

(1) For library functions that provide important information for static analysis (e.g., intent
manipulation functions), wemanually build a precisemodel for them based on the function’s

implementation and/or documentation (each model simply consists of custom gen and kill
functions).

(2) For all other library functions and native methods, we provide a uniform conservative

model. The conservative model essentially assumes that for every object parameter, any of

its fields may be modified and becomes unknown; that is, the field can point to a fresh object,

or any existing object reachable from the method parameters (and static fields) that is type

compatible. If the function also returns an object, the returned object is also considered

unknown.

In Figure 3, line L39 inserts a key-value pair (“key”, imei2) into intent i3’s mExtras4 field. The
putExtra is an Android system API and we model it so that we can keep track of the data flow

through the call. In this case, the model of the API will assign the key-value pair to the mExtras
field of intent i3. The generated fact at Line L39 is then ⟨(env, mExtras), (“key”, □37)⟩ following our
notation for a field-fact, where env represents the creation site of intent i3, and □37 represents the
String object imei2 points to. Note that env represents the entry point of the environment method

of BarActivity.

4.1.3 Handling Inter-component Channels. During the intra-component analysis phase, one

cannot tell what data will be received by this component from others through inter-component

channels, e.g., Intent, RPC, static field, etc. Thus, at any information retrieval point for those channels

we apply a conservative model like that used in Section 4.1.2. More detailed discussion on how to

handle data flows across components will be discussed in Section 4.3.

4.2 Building the Component-Level Data Dependence Graph
A component-level data dependence graph (DDG) is derived from the component’s DFG. With the

help of DDG, we can determine which part(s) of the program a particular program point depends

on. DDG is a directional graph; its node set is the same as the nodes in DFG, and has two types

of edges: (i) object dependence edge – linking the use site of an instance to the creation site of

the instance, and (ii) variable def-use edge – linking a use site of a variable to the def-site of the

variable.

Since object flows in a component are captured in DFG, the constructed DDG automatically

captures data dependencies within the component boundary. As an example, in Figure 3, the L14 in
4
The mExtras field is an aggregate object that may store multiple key-value pairs. We currently do not model such aggregates

and instead “flatten” all the elements in an aggregate into singleton instances. This will create two possible interpretations

of multiple facts regarding an aggregate object: either they are different possibilities from different program branches, or

they are part of a single aggregate in the same branch. Amandroid’s static analyzer conservatively assumes both are possible

to ensure soundness, but this could lose some precision. Modeling aggregates is an engineering work that we will address

in future work.

(a) RPC (b) Static Field

Fig. 4. Data flow between app components via RPC and Static Field.

FooActivity uses imei3 while the entry of statement L14 has a fact ⟨imei3, □12⟩. This tells us that
the object □12 (generated at L12) is used in statement L14. Thus there is a data dependence path
from L14 of the FooActivity to the def-site L12 in the same component.

4.3 Linking Inter-component Data Flows
When components interact through Inter-component communication (ICC) channels, the dataflow

facts will propagate from one component to another. There are a couple challenges in analyzing

inter-component data flows for Android apps.

(1) An Android app components run concurrently and their execution sequence can be arbi-

trarily interleaving or parallel depending on the events that trigger the various call-back

methods.

(2) A component allows “re-entrant,” in the sense that after component A invokes ICC on

component C and changes its state, another component B may invoke ICC on C later and
be impacted by the effect of the previous ICC from A.

Figure 4a shows a case where a Service C has a field f and two RPC methods set() and get()
which set and get data from field f, respectively. These two RPC methods can be invoked in any

order with any data from all other components. For example, component A may set a sensitive data

into Service C’s field f, and component B could retrieve such data from C via the get() RPC call

later, forming an information flow path. Figure 4b shows another case where component A, B share

data via static field X.f, which can form an information flow path from A to B.

To capture these data flows, a traditional approach is to compute a global fixed-point (for the

facts set) among all the components
5
. The downside is that for any new set of components we want

to analyze, we would have to re-compute the global fixed-point, making it impossible to re-use

the per-component analysis result. Thus we have decided to adopt a different approach. When

computing the DFG for each component in the intra-component analysis phase, we assume that any

type compatible data is possible to enter the inter-component communication channels. In addition

we book-keep all the data that leave/enter the component through the inter-component channels. In

the inter-component analysis phase, we then “stitch” the inter-component communication channels’

receive points with the corresponding send points (between two different components), forming

the inter-component data dependence graph.

This conservative approximation serves the purpose of our goal well: 1) Android is a component-

based system and any component may receive data from any other component – not necessarily

the ones in the same app; thus assuming any type-compatible data may come from the channel does

not lose any precision from a practical perspective; 2) By analyzing each component separately, it

allows us to re-use the intra-component analysis result for any further inter-component analysis,

possibly involving different subsets of the components. This will scale better with large volumes of

apps.

Our approach can support both inter-component and inter-app analysis naturally. We only need

to compute data flow analysis for each component once and store the DFG and book-keeping

information. In the inter-component analysis phase the DFG of all the involved components are

loaded; based on the book-keeping information we can then find the data dependence between the

sender and recipient points. The book-keeping information is stored in a data structure called the

summary table (ST).
We generate a Summary Table (ST) for each component C via processing the corresponding DFG,

where ST lists the communication channels through which C communicates with other components.

ST records specification of different types of channels including e.g., Intent, RPC, and static fields
6
.

In particular, for each such channel the ST of C records the following items: (1) send-points where
C is the sender of the channel. The information recorded includes what kind of data is sent (e.g.,
outgoing Intent value for an Intent channel) and the receiver’s name. (2) receive-points where the
component C is the receiver of the channel. The recorded information includes receiver’s name

which allows matching with other components’ send-points. For example, for Intent channel, the

intent filter value; for RPC channel, the RPC method’s signature, and so on. Table 1 lists the main

items in a ST .

Table 1. Communication points of an app component as listed in its Summary Table

Channel Send-points Receive-points

Intent Outgoing Intent Intent Filter

RPC Method signature, params, return Method signature, params, return

Static Field Field signature to write, data Field signature to read

With the help of Figure 4, we now discuss how the STs are constructed and used. There are

three components in Figure 4a, whose DFG has already been built. In component A, we saw a

5
It is quite non-trivial to compute this global fixed-point while at the same time simulating the non-determinism caused by

the interleaving concurrent threads [15].

6
Files can serve as an inter-component communication channel like static fields, and can be handled in a similar way. This

would require a precise string value solver, which we leave for future work.

RPC call C.set(d) that sends data d to Service C via the RPC channel C.set(). We add this to

the RPC channel’s send-point description in A’s ST . Component B has a RPC call C.get() which
sends a request to Service C and expects a return value from it. We add it to both the send-point

and receive-point description of B’s RPC channel. Service C has two RPC methods C.set(x) and
C.get(); we add them to the receive-point of C’s RPC channel. C.get() is returning a value back

to its caller; we add it to the send-point of C’s RPC channel. Figure 4b shows the inter-component

communication caused by static field. Here the send-point description indicates a write to the

static field, and a receive-point description indicates a read from the field. With the STs for each
component constructed, we can “stitch” the send and receive points of the channels between two

components to identify all possible inter-component data dependency. The “stitching” process is

basically matching each channel’s send-point with receive-point between two components based

on channel specific criteria. For example, in Figure 4a we can stitch component A’s send-point 1
to component C’s receive-point 1, because their method signatures match. After “stitch” all the

send-points and receive-points (the arrows shown in Figure 4a), we can easily see the information

flow path from d in component A to leak in component B.
In the next three subsections we further discuss the ST construction and this “stitching” process

for each type of the inter-component communication channels.

4.3.1 Intent.

ST Construction.
Section 2 illustrates that malicious apps can easily manipulate Android’s inter-component

communication (ICC) to stealthily leak sensitive data. To track data flow through the Intent channel

we need to solve statically certain values for the intent involved. At a send-point we need to solve

for the Intent call parameters to infer the value of the outgoing Intent, so we can match it with the

correct receive-points. At the receive-point we need to discover the Intent filter value so we can

match it with the possible send-points. Amandroid infers the Intent API call parameters and Intent

filters using the points-to facts computed and the app manifest file. This information will enable

us to discover the source-destination component pair of the Intent call in the inter-component

analysis phase.

The destination of an Intent can be either explicitly or implicitly specified in the outgoing

intent. The common way of creating an explicit intent is by adding the destination component’s

name using Android APIs such as setClass (L7 in Figure 3). For instance, at L8 in Figure 3

Amandroid can derive that the intent parameter i1’s field mComponentName is “BarActivity.” This
fact comes from the modeling of the API function setClass called at L7, which generates a field-fact
⟨(6, mComponentName), “BarActivity"⟩, where 6 represents Intent i1 which was created at L6. We

record the destination component name as a send-point in ST . Also, we document in ST whether the

Intent caller expects a result returning later from the callee component (in case of stateful Intent call

like “startActivityForResult” as opposed to stateless Intent call like “startActivity”, “bindService”,

etc.).
An implicit intent does not include the name of a specific destination component, but instead

requests a general action to perform, and the System finds a capable component (from the same app

or another) which can fulfill the request. Some fields of an Intent object are used in this matching:

mAction (String), mCategories (set of String), mData (Uri), and mType (String). These intent fields

can be manipulated by invoking certain Android APIs. For instance, i.setData(Uri.parse(http:
//abc.com/xyz)), which sets the Uri corresponding to a http url to the mData field of an Intent i.
Through proper modeling of these API functions (Section 4.1.2), Amandroid can derive possible

(String) values of the relevant fields of an Intent object, which the Android system bases its decision

on Intent destinations. Amandroid documents these fields of the Intent as send-points in ST .

Stitching Intent channels.
For explicit intents it is straightforward to find the correspondence between the source component

and the destination component. The matching information is directly available as the send-point (in

the ST) of the source component and as the receive-point (in the ST) of the destination component.

For example, FooActivity has a send-point at L8 (startActivityForResult()) where Intent i1
has the target component name set to “BarActivity”, which matches the receive-point in the ST of

BarActivity. Hence we discover the correspondence.

However, tracking the “return” intent j sent by the callee component X in a stateful Intent is more

complicated, e.g., the name of the destination component of the intent i3 sent through the “setRe-

sult” API as in L40 of BarActivity is not available in the app code (neither in the ST of BarActivity).
To know the possible destinations of intent j, we first check through all components’ ST to find

components Ys which have initiated a stateful Intent call (i.e., startActivityForResult) to com-

ponent X (e.g., BarActivity). Then, we infer that onActivityResult API of each of components

Ys will receive intent j as a parameter.

Furthermore, there is some challenge in resolving the target of an implicit intent. The Android

system finds the destination based on the intent fields as well as the manifests of all the apps

which specify intent f ilters for a component. An intent f ilter is an XML expression involving the

action tag, cateдory tag, and data tag (which includes both Uri and type). The Android system

determines the destination of an implicit intent by applying a set of rules [1] matching the relevant

intent fields and the intent filter specification for every component on the system. Amandroid

implements all those matching rules, using the static analysis results that show the possible string

values of the relevant intent object fields. It runs a precise actiontest , cateдorytest , and datatest
(having both Uri and type) to find the destination component(s). Our static analysis can readily

handle Intent fields. For complicated String operations (e.g., concatenation in a while loop), if

Amandroid cannot infer the exact string value, it reports it as any string, ensuring the soundness of
our analysis. We are able to run the Uri test matching different parts of the Uri (e.g., scheme, path,
host, port) between the intent and an intent filter. Furthermore, Amandroid is also able to find the

specifications of dynamically registered Broadcast Receivers, if any.

4.3.2 RPC.

ST Construction.
A service provides the programming interface that a client component can use to interact with.

This allows a client component to send/receive data to/from the service via a RPC call. In the

example app of Figure 1, MyService defines an inner class MyBinder which extends the Binder
class, and returns such a Binder instance in onBind() lifecycle method. MyBinder returns handle of
MyService which exposes two RPC methods, MyService.setImei() and MyService.getImei().
BarActivity binds to MyService at L25 which uses a ServiceConnection defined at L45. After the
bind succeeds, it will set the above handle to the s field of BarActivity. At L37 when user clicks

on a button at BarActivity, it will invoke the RPC call of MyService.getImei() to retrieve data

from MyService.
Fortunately, in static analysis, discovering the above RPC connection between two components

(intra-app, or Local Service) is straightforward. At L37 from static information we already know

that the target method’s signature is MyService.getImei(). In addition to the Local Service (intra-
app) case above, there are two more cases, Messenger Service and AIDL (a.k.a. Remote Service),
which allows both intra- and inter- app RPC calls. For Messenger Service case, we first infer the

Handler type registered to the Messenger instance that used at the service side, and mark the

Handler’s handleMessage() as the RPC callee. At the client side, we mark the invocation of

Messenger.send() as the RPC caller. For AIDL case, we can statically infer the interface type, so

any implementor of such interface could be the callee target. For both the caller component and

the callee component, we document the RPC method signature, parameters, return variable (some

as send-points and some as receive-points) in ST .

Stitching RPC channels. Amandroid first evaluates Intent channel of ST to find the binding

relation between client component and service component. Then, based on the binding relation to

match the RPC caller and callee. For Local Service and AIDL case, we match the call signatures to

link the RPC caller and RPC callees. For Messenger Service, we match the Messenger.send() to

Handler.handleMessage().

4.3.3 Static Field.

ST Construction. Documenting static field is straightforward as each static field has its unique

name. In our ST we just need to record from which program point which static field is read

(receive-point) or written to (send-point).

Stitching static field channels. We just need to match the static field’s name at send-point and

receive-point to make the connection.

4.4 Building App-level Data Dependence Graph
After figuring out all the channel matchings, we connect the data dependency links among com-

ponents’ DDGs to build an app-level DDG. Then we can do data dependency analysis of the app.

For instance, to query the data leakage on the example app in Figure 3, we can find a taint source

at MyService.setImei() method – any other component can use this RPC call to set the phone

IMEI to the MyService.imei field. Then at the MyService.getImei() RPC method the return

point can get IMEI and return back to L39 at BarActivity; then it puts this information into Intent

i3’s mExtra field, and at L40 sends as a result Intent to the caller component FooActivity. At
FooActivity.onActivityResult(), L6 extracts IMEI and sends it out via sendTextMessage(),
which is a sink point.

4.5 Inter-app Analysis
Inter-app communication is nothing but one kind of inter-component communication which

passing control and data across the app boundary. Thus, component-based analysis can be directly

used to do inter-app analysis. However, it has following challenges.

(1) Only a subset of ICC channels can be used for inter-app communication, for example, local

service implementation of RPC channel does not support another app bound to it, static

field only allows the same app to read and write as they run in the same JVM.

(2) Multiple app may share same package and class name which can cause trouble for static

analysis tool if it does not aware of the different app context.

To address challenge (1), Amandroid manages different scopes for different ICC channels. When

linking the inter-component data dependence, we knowwhich channel can across the app boundary

which are not. To address challenge (2), Amandroid use different class loaders for different apps,

and in the stitching phase Amandroid adds origin information for each program point to avoid any

conflict.

Fig. 5. Amandroid actor model.

5 IMPLEMENTATION
Amandroid’s modules are implemented using Scala language, leveraging Akka’s actor-model [2] to

achieve distributed computation. Actor-model is a mathematical model of concurrent computation

that treats “actors” as the universal primitives of concurrent computation [52]. Each actor is a

computation unit which maintains its private state and can only affect each other through messages

to avoid usage of any locks.

As Figure 5 indicates, Amandroid’s individual phases are encapsulated as actors whereas each of

them maintains its own state and behavior. Amandroid Supervisor Actor is responsible for handling
the user’s app analysis request and dispatching orders to individual worker actors, and based on the

response (of worker actors) moving the analysis to the next phase. Each phase of the analysis has

multiple worker actors that perform the computation concurrently, leveraging parallel computing

power. The actors communicate with each other with only a small amount of data; thus Amandroid

could run in a highly distributed fashion.

The component level DFG, DDG and app metadata make the core information to be used in

the security analysis phase. New security analyses may be needed to be performed from time

to time while we observe that the required core information is the same for the same app. Thus

storing the core information can save huge amount of compute time. However, the data dependency

graphs can be quite big (GBs for a typical app). Thus we do not attempt to store the graphs, but

rather only store the dataflow facts computed during the static analysis phase. The graph structure

can be reconstructed efficiently when needed. This staging strategy is illustrated in Figure 5. Apk
Info Collect Actor and Points To Analysis Actor store the collected apk information and computed

dataflow facts into the stage database, which can be used to rebuild the component-level DFGs,
DDGs for the Security Analysis Actor. The dataflow facts stored in the database does not take much

space — few MBs for an app.

Amandroid not only can do dataflow-based analysis, but also can be used as a general-purpose

static analysis framework for Android apps. Amandroid provides comprehensive functionalities and

APIs for other tools to build on, and performs analysis ranging from simple information collection

to data flow/dependence analysis.

6 EXPERIMENTATION AND EVALUATION
We extensively experimented Amandroid in multiple types of security analyses. We used several

sets of apps: 2,300 popular apps from Google Play, 2,300 malware apps from the AMD dataset [50],

and two benchmarks (hand-crafted apps by other researchers and us). For brevity, we call the first

two data sets GPlay and MAL, respectively.

To evaluate the effectiveness of Amandroid, we aim to answer the following research questions:

RQ1: How does the running time of Amandroid scale?

RQ2: Over accuracy metrics how Amandroid compares with other existing static analysis

tools for Android apps?

RQ3: Is Amandroid capable of discovering crucial security issues to aid in real-world app

vetting?

RQ4: How much effort does it take to build a new analysis on top of Amandroid core

framework?

We ran our experiments on a machine with 2.7 GHz, 12-core Xeon, and 64 GB RAM.

6.1 RQ1: How does the running time of Amandroid scale?

Fig. 6. Time to Build DFG.

Amandroid offers the user options of choosing multiple precision levels. For instance, the context

depth k (of the control flow graph) serves as a parameter to set the trade-off between precision and

performance. Our reported experiment results correspond to k = 1 (unless otherwise mentioned),

meaning that the static analyzer tracks up to one calling context. Amandroid also allows the user

to define the scope of the analysis by excluding certain third-party libraries. In our experiment we

excluded a few popular third-party libraries since they are large in size and could be separately

analyzed, summarized, and reused by the analysis of all the apps that include them.

The most computation-intensive step in Amandroid is building the DFG for each component.

Once the DFG is built, the running times of the subsequent analyses are negligible – these include

building ST , DDG and running the specialized analyses on top of them. Figure 6 presents the time

taken by Amandroid to construct DFG for 4,600 real-world apps (GPlay and MAL).

These apps have 141319.50 lines of bytecode instructions on average. The median running time

for computing the DFG for all the components in an app is 3 minutes; the minimum is 0.15 seconds

whereas the maximum is 169 minutes. The scatter plot shows both the running time and the size of

the app (in number of bytecode instructions).

We observe an increase in running time of new Amandroid compared to the original version [51].

The reason is two-fold: (1) The complexity of Android apps (i.e., the dataset on which Amandroid

runs) has increased over years, and the dataset we used in this experiment is more recently collected;

(2) The new Amandroid has a more complete model (i.e., component-based analysis as discussed

in Section 4) to simulate the semantics of Android application, which was not captured in the old

version.

6.2 RQ2: Over accuracy metrics how Amandroid compares with other existing static
analysis tools for Android apps?

We use two benchmarks, Droid-Bench and ICC-Bench to compare Amandroid with two most

well-known static analysis tools for Android: IccTA [29], and DroidSafe [24]. The benchmark

testsuites consist of hand-crafted apps designed to test certain analysis features. Since those apps

are hand-crafted, the ground truth is known, which allows us to compute metrics such as precision

and recall. However, one needs to keep in mind that these metrics are not representative of the

performance of the tools on real-world apps. They can only be used for comparison purposes.

Table 2. Results on Benchmarks. O = True Positive, * = False Positive, X = False Negative.

(a) Droid-Bench

App Name IccTA DroidSafe Amandroid

Inter-component Communication (ICC)

ActivityCommunication1 O O O

ActivityCommunication2 OO* OO OO*

ActivityCommunication3 X O O

ActivityCommunication4 OO* OO OO

ActivityCommunication5 O O O

ActivityCommunication6 X O O

ActivityCommunication7 O O O

ActivityCommunication8 OO* OO OO

BroadcastTaintAndLeak1 OO OX OO

ComponentNotInManifest1

EventOrdering1 O O O

IntentSink1 O O O

IntentSink2 O O** O

IntentSource1 O O O

ServiceCommunication1 X O** O

SharedPreferences1 O O O

Singletons1 X O X

UnresolvableIntent1 OOO OOO OOO

Sum, Precision and Recall — ICC

O, higher is better 19 22 22

*, lower is better 3 4 1

X, lower is better 4 1 1

Precision p = O/(O + *) 86% 85% 96%

Recall r = O/(O + X) 83% 96% 96%

F-measure 2pr/(p + r) 85% 90% 96%

Inter-app Communication (IAC)

Echoer

N/A N/A O
14
*
5SendSMS

StartActivityForResult1

Precision and Recall — IAC

Precision p = O/(O + *) 74%

Recall r = O/(O + X) 100%

F-measure 2pr/(p + r) 85%

(b) ICC-Bench

App Name IccTA DroidSafe Amandroid

Part A — Intent Addressing

Intent_Explicit1 O X O

Intent_Implicit_Action OO XX OO

Intent_Implicit_Category OO XX OO

Intent_Implicit_Data1 OO XX OO

Intent_Implicit_Data2 OO XX OO

Intent_Implicit_Mix1 OOO XXX OOO

Intent_Implicit_Mix2 OO XX OO

Intent_DynRegisteredReceiver1 OO XX OO

Intent_DynRegisteredReceiver2 OO* XX OO*

Part B — Intent Data Flow Tracking

Intent_Explicit_NoSrc_NoSink

Intent_Explicit_NoSrc_Sink

Intent_Explicit_Src_NoSink

Intent_Explicit_Src_Sink O X O

Intent_Implicit_NoSrc_NoSink

Intent_Implicit_NoSrc_Sink

Intent_Implicit_Src_NoSink O X O

Intent_Implicit_Src_Sink OO XX OO

InteneIntentService O X O

Intent_Stateful OOO OXX OOO

Part C — RPC

RPC_LocalService O X O

RPC_MessengerService X X O

RPC_AIDL X X*** O

RPC_ReturnSensitive O X O

Part D — Mixed

Intent_RPC_Comprehensive X X****** O

Sum, Precision and Recall — ICC-Bench

O, higher is better 28 1 31

*, lower is better 1 9 1

X, lower is better 3 30 0

Precision p = O/(O + *) 97% 10% 97%

Recall r = O/(O + X) 90% 3% 100%

F-measure 2pr/(p + r) 93% 5% 98%

DroidBench [14] is a benchmark testsuite published by the FlowDroid team, which consists of

Android apps for evaluating information-flow analysis. The version we used contains 21 apps, in-

cluding inter-component communication challenges as well as inter-app communication challenges.

ICC-Bench [27] contains 24 apps for testing various Intent communication, RPC communication,

static fields tracking capabilities as well as multi-app analysis capabilities. The test apps in ICC-

Bench are categorized in four parts each of which focuses on one type of ICC: Part A involves various

types of intent handling: explicit intent target finding, implicit intent target finding (via matching

action, categories, data and type), and dynamically registered component handling, etc.; Part B
focuses on the accuracy of the analysis by including a variety of scenarios where certain Intent-

related information flow paths do or do not exist, and the capability to handle IntentService7 and
Stateful ICC; Part C tests the ability of handling different types of RPC communications; Part D

contains one comprehensive test case to test whether the tool can handle complex scenarios where

data may flow via various communication channels. ICC-Bench is designed by us and publicly

available [27]. The apps in these testsuites are not crafted to favor a particular tool. They represent

common scenarios one will find when reasoning about the relevant security issues.

We run each tool on each test app to check if the tool can report the correct data leak paths. The

detailed comparison of the performance of IccTA, DroidSafe and Amandroid on DroidBench and

ICC-Bench is available in Table 2. The results are shown in terms of True Positive (O), False Positive

(*), and False Negative (X), if any. If a test app contains multiple data leak paths, the result is shown

for each of them. As an example, in Table 2 for ActivityCommunication2 app of DroidBench, both
IccTA and Amandroid have entry “OO*”, which indicate that these tools detect two paths (i.e., OO)
but also report one false path (i.e., *). We observe that Amandroid outperforms IccTA and DroidSafe

on both benchmarks. The sole false negative of Amandroid for Droid-Bench is due to Amandroid

not modeling Java Singleton. The false positives of Amandroid on both benchmarks are due to

context-insensitive inter-component data flow handling and the rudimentary string analysis.

Although IccTA’s website claims that the tool is capable of performing inter-app analysis by

combining multiple apks into a single apk, in our experience their ApkCombiner failed to combine

the inter-app communication apps in DroidBench. Thus we could not obtain any result from IccTA

on the inter-app communication experiment for Droid-Bench. Moreover, the ICC-Bench apps

have all been updated to the newest Android version (Android 7.1.1), representing the current

Android application design with the new permission acquiring mechanism introduced by Android

M and later versions. Neither IccTA nor Amandroid had problem of detecting data leaks in the

new version of apps after we manually updated some of their dependency libraries and Android

sdk. However, DroidSafe could not handle the new design even after we updated the dependency

libraries and Android SDK, and that is the reason DroidSafe is shown to be missing so many paths

over ICC-Bench testsuite.

6.3 RQ3: Is Amandroid capable of discovering crucial security issues to aid in
real-world app vetting?

Amandroid is a highly extensible framework that allows analysts to write customized security

checkers as plugins on top of it. To evaluate Amandroid for real-world app vetting, we wrote five

security checkers (where each checker detects a particular security problem) and apply them on

the GPlay and MAL dataset.

The security checkers are listed below: (1) Hiding-Icon Checker, (2) Crypto Library Misconfigura-

tion Checker, (3) SSL/TLS Misconfiguration Checker, (4) Data Leakage Checker, (5) Intent Injection

Checker.

Checkers (1), (3), (4) are new and not reported before. (2), (5) were first reported in the orginal

Amandroid paper [51] and have been substantially extended since then.

7IntentService is a special Service, which receives an Intent and executes the corresponding operation in background.

Fig. 7. Hiding-Icon code snippet.

6.3.1 Hiding-Icon Checker. Hiding-icon is one commonmalware scheme to hide the application’s

physical existence on the phone. In particular, it hides the malware app’s launcher icon while

making the malware’s background service run. To do this, the app needs to disable its main

component while telling the android system not to kill its background service by calling an API

Context.setComponentEnabledSetting() with specific parameters as shown in Figure 7.

The idea of detecting such suspicious behavior is to extract from DFG the values passed to the

Context.setComponentEnabledSetting() API and match them with the malformed parameters

(as shown in Figure 7). Applying this checker to the app dataset, we found 4 GPlay apps and 75

MAL apps having this suspicious behavior.

6.3.2 Crypto Library Misconfiguration Checker. We implemented a plugin to check whether an

app conforms to the following crypto API configuration rules [16]:

Rule 1: Do not use ECB mode for encryption.

Rule 2: Do not use a non-random IV for CBC encryption.

The basic idea for checkingRule 1 is to evaluate the string value used to create the javax.crypto.Cipher
instance. If the string value indicates that the cipher will run in ECB mode, the checker will report

an alarm. To check Rule 2, the checker first detects the cipher is using the CBC mode, and then

checks the IV creation process to see whether a constant IV is used. Table 3 summarizes the results

we obtained through running the above checker on the app dataset.

Table 3. Crypto Library Misconfiguration Checker Report.

Dataset GPlay MAL

#apps using ECB mode 438 303

#apps using non-random IV 210 87

6.3.3 SSL/TLS Misconfiguration Checker. SSL/TLS protocols are widely adopted in Android

applications to provide secure data transmission between the client app and their backend server.

App developers may not be properly trained for correctly using SSL/TLS library and there is a lack

of visual security indicators for SSL/TLS usage in the development environment (IDE). As a result

SSL/TLS library APIs can be easily misconfigured [19, 42].

One common misuse case is allowing all hostnames for the SSL/TLS’s HostnameVerifier, by in-

voking SSLSocketFactory.setHostnameVerifier()with parameterALLOW_ALL_HOSTNAME_
VERIFIER. To capture this, the checker will evaluate whether the parameter passed to SSLSocket-
Factory.setHostnameVerifier() is equal to ALLOW_ALL_HOSTNAME_VERIFIER.
Another misuse case is accepting all certificates or accepting all hostnames for a certificate as

long as a trusted CA signed the certificate, by providing their own or third-party-implemented

TrustManager and SocketFactory. [19] provides a list of problematic TrustManager and SocketF-
actory implementations with its class names, which our checker plugin searches for in a given app.

Table 4 summarizes the results we obtained through running the above checker on the app dataset.

Table 4. SSL/TLS Misconfiguration Checker Report.

Dataset GPlay MAL

apps with Bad TrustManager 63 18

apps with Bad SSLSocketFactory 37 13

apps with Bad SSL hostname configuration 288 192

6.3.4 Data Leakage Checker. Phone call logs, contacts, and SMS messages are a few examples

of user’s sensitive information which should be kept private. Amandroid can be used to check

whether an app obeys the above data usage policy. We apply simple strategies to identify the

various communication data sources. Basically, Amandroid tracks the corresponding (i.e., tied
with the data source) string literals or BroadcastReceivers: (1) Call logs: “content://call_log/calls”;

(2) Sim card contacts: “content://icc/adn”; (3) Phone contacts: “com.android.contacts”; (4) SMS:

“content://sms/inbox/” and input for BroadcastReceivers handling the “SMS_RECEIVED” event.

On the other hand, the sinks are any outgoing communication channel, such as http/https write,

SMS send, implicit Intent send, etc. We found several potential sensitive data leakage cases, some

of which are shown in Table 5.

Table 5. Data Leakage Checker Report.

App Name Dataset Description

com.skymoons.hqg.anzhi.apk GPlay Read user’s SMS inbox, write into log, then send text message to the senders.

12050f267d5e8ce6f77d2111cd3043f0.apk MAL

Read user’s SMS inbox, store in a JSON object, write into SharedPrefeferences,

then upload to its C&C server.

5339a0e7e86ac1f5472f832874426c25.apk MAL Upload user’s SMS content and information to its C&C server.

51bf3112982473e99b88965f6e271799.apk MAL Read user’s SMS inbox, upload to its C&C server, send text message to senders.

6.3.5 Intent Injection Checker. Intent is one of the most commonways for an Android component

to receive and process data from outside. If an appmakes wrong assumptions for the incoming intent

and performs sensitive operations based on it, that may result in serious security holes [30, 49].

To detect the above issue, in Amandroid we mark the intent receiving point as the source, and

sensitive operations (e.g., open URL connection, crafting another intent, etc.) as sink. We then query

the DDG to find whether there is a data dependence path between them. We found several potential

intent injection cases, some of which are shown in Table 6.

Table 6. Intent Injection Checker Report.

App Name Dataset Description

com.qryptal.verifydetailsauthenticate.

android.apk
GPlay

Allows any app inject URL to its ShareActivity, which will then encode it to a

Barcode and display to the user. If user scan the Barcode, theymight be redirected

to malicious websites.

com.freegame.basketball.apk GPlay
Allows any app inject data into its SharedReference, which will disable this app’s

functionality.

com.mmmono.mono.apk GPlay
Allows any app send commands to start/stop its service’s heartbeat and connec-

tivity status.

com.bigfishgames.dmddgoogfree.apk GPlay Allows any app send commands to launch arbitrary URL and components.

6.4 RQ4: How much effort does it take to build a new analysis on top of Amandroid
core framework?

The advantage of Amandroid’s approach is that the general framework provides a means for

building a variety of further security analyses in a straightforward and easy way. Each special

analysis built on top of Amandroid involves developing a “Checker plugin” that leverages the DFGs

and DDGs from Amandroid’s analysis. Moreover, once the core analysis produces DFGs and DDGs
for an app, they can be stored and reused in multiple security analyses. We present the summary of

the plugins used in the above applications in Table 7, which shows their size in Scala LOC, as well

as the average running time. This can be compared with the size of the core engine and its average

running time, shown in the last row of the table.

Table 7. Code Size and Running Time (Checkers and Core)

Name

Approx. Size

Avg. Time

(Scala LOC)

Hiding-Icon Checker 40 50ms

Crypto Library Misconfiguration Checker 109 50ms

SSL/TLS Misconfiguration Checker 62 20ms

Data Leakage Checker 73 50ms

Intent Injection Checker 23 100ms

Core Framework 46,345 440s

7 RELATEDWORK
There has been a long line of works on applying static analysis for Android security problems [5,

11, 16, 19, 22, 26, 30, 33]. Below we describe a few works that are most closely related to ours.

The design of Amandroid leverages a number of approaches from FlowDroid [5, 22] (e.g., callback
collection algorithm during environment generation), but the two also have a few important

differences. FlowDroid does not handle ICC and as such cannot address security issues involving

intent passing among multiple components. FlowDroid builds a call graph based on Spark/Soot [46],

which conducts a flow-insensitive points-to analysis. FlowDroid then conducts a taint and on-

demand alias analysis based on the above call graph, using IFDS [38, 39] which is flow- and

context-sensitive. The flow-insensitivity in the call graph construction may introduce spurious call

edges (false positives), which could impact the analysis precision of the subsequent IFDS analysis.

Amandroid computes the call graph at the same time as the dataflow analysis by computing the

flow- and context-sensitive points-to facts; thus its callgraph is more precise, which could lead to

fewer false positives in the final analysis results. Moreover, FlowDroid does not calculate alias or

points-to information for all objects in a both context- and flow-sensitive way. This is a design

decision from computing cost concerns [22]. Amandroid calculates all objects’ points-to information

in a both context- and flow-sensitive way, with reasonable computing cost (ref. Section 6.1). This

enables us to build the generic framework supporting multiple security analyses.

Epicc [33] computes Android Intent call parameters using the same IDE framework as FlowDroid,

by modeling the intent data structure explicitly in the flow functions. To the best of our knowledge,

Epicc does not use the Intent parameter analysis result to resolve the Intent call targets in the

general case, and has not used the result to perform inter-component dataflow analysis. Amandroid’s

approach to deriving Intent parameters is to simply use the flow and context-sensitive points-to

information (including that for string objects) already computed in the DFG, without the need
for a separate data flow analysis just for Intent. Amandroid also uses the Intent call parameter

information to link Intent call sites to call targets, resulting in an DFG that includes data flow paths

both within and across components.

Recently, IccTA [29] and DroidSafe [24] made advancement in the state-of-the-art of Android app

static analysis. IccTA extends FlowDroid, which can now track data flows through regular Intent

calls and returns. However, IccTA is yet to track the information flow through remote procedure

call (RPC). DroidSafe [24] tracks both Intent and RPC calls, but does not support inter-app analysis.

Lu et al. [30] uses a static-analysis scheme called CHEX to detect component hijacking problem
in Android, which is reduced to finding information flows. CHEX first constructs app-splits, each of

which is a code segment reachable from an entry point. It then computes the data-flow summary

for each split using Wala [21]. The split summaries are linked in all permutations that do not violate

the Android system call sequences and could result in transitive information flow. Amandroid

computes information flow in a different way – through the usage of an environment method for

each component that calls the relevant callbacks in the right order (per Android system specification),

and by building the DFG and DDG for the complete app. CHEX does not have the provision to

track data flow through the ICC channels, which Amandroid does.

Chin et al. [11] first systematically studied the attack surface related to Intent. In particular, they

identified problems such as unauthorized intent receipt and intent spoofing. They also developed

a static analysis tool which can raise warnings for the above problems in an over-conservative

manner. Their tool ComDroid performs flow-sensitive, intra-procedural static analysis, and the

paper states that there is a limited inter-procedural analysis that “follows method invocations

to a depth of one method call.” Amandroid performs a full-fledged inter-procedural data-flow

analysis in a flow- and context-sensitive way, and also tracks the data flows over the ICC channels.

While we would like to conduct comparison study between ComDroid and Amandroid, the link

to the ComDroid tool (used to be http://www.comdroid.org) is no longer there. We contacted the

authors for obtaining a copy of the tool and dataset used for evaluation, but have yet to receive the

information.

There has been a large body of work reporting Android app security issues [55, 56], some

of which use static analysis techniques [16, 19, 23, 25]. Those works focus on finding specific

security problems, and the static analyses used do not seem to address some key issues such as

the inter-component nature of Android app’s execution and the precise modeling of Android’s

callback sequences. In contrast, Amandroid is a precise and general inter-component static analysis

framework which can address a large range of security issues in Android apps.

Multiple prior works [13, 34, 53] investigated the root security problems in the Android system

and proposed augmented infrastructures to enforce the given security policy. Recently, SEAn-

droid [40] has been proposed which enforces Mandatory Access Control (MAC) both in the kernel

layer and in the middleware. This system provides a better mechanism for sand-boxing the apps.

However, MAC will not stop the security problems which happen within an app or through the

legitimate ICC channels. In this paper, we assume the sand-boxing (and isolation) of apps by the

Android system is not compromised; thus, our approach is complementary to those prior works.

TaintDroid [17] is a dynamic (runtime) taint-tracking and analysis system to find potential misuse

of the user’s private information. All dynamic analyses are subject to evasion attacks. For example,

researchers have shown [35] that Google’s Bouncer [10] can be fingerprinted and hence evaded by

a well-crafted app. On the other hand, static analysis investigates the code of the app (along with

the app’s manifest, etc.), which determines the runtime behaviors of the app; this makes it attractive

for security vetting. Recently Sounthiraraj et al. [42] showed that static and dynamic analysis can

be combined to achieve more effective detection/confirmation of security problems. Our approach

provides a precise and general static analysis framework that can complement dynamic analyses.

8 CONCLUSIONS
In this paper we presented Amandroid – a general static analysis framework that can be used

for security vetting of Android applications. In particular, Amandroid can precisely track the

control and data flow of an app across multiple components, and can compute an abstraction

of the app’s behavior in the forms of data-flow graph and data dependence graph. As a general

http://www.comdroid.org

Fig. 8. Building the DFG for foo: The intra-procedural control flow graph (CFG) of foo is extended to a callee,
bar.

framework, Amandroid can be easily extended to achieve a number of specialized security analyses.

Our experiment results showed that Amandroid scales well. We also demonstated that Amandroid

can be readily applied to effectively address multiple specialized security problems. Our experiment

results showed that Amandroid out-performs existing static analysis tools for Android apps.

APPENDIX
The Basic DFG Building Process.
A static analyzer simulates the program and keeps track of the fact sets, until a fixed point is

reached. The convergence to a fixed point (analysis termination) is guaranteed as long as the flow

equations are monotone, and the number of facts is finite, which hold for Amandroid’s analysis. For

a given app, it contains a finite number of object creation sites and variables/fields (and as typically

done, elements of an array are summarized as one); moreover, we keep tracks of calling contexts

up to a finite number k.
Amandroid builds the DFG by flowing the points-to facts from the program’s entry points.

Here the program is the IR of the app’s dex code augmented with the environment methods as

discussed in Section 3.2. Unlike Java applications, there is no “main” method in an Android app;

every component could be the starting point of an app. Our component-based environment model

captures the full life cycle of a component and all of its possible execution paths, including those

due to interacting with other components. Thus, if we assume one particular execution path starts

from component C, we can use C’s environment method E_C as the program’s entry point. To

include all possible execution paths from all possible components, we do this for every component

in the app, yielding multiple DFGs. Formally, let C be a component, the DFG from C is denoted

DFG(EC) where E_C is the environment method of C, and is a tuple defined as the following.

DFG(EC) ≡ ((N ,E), {entry (n) | n ∈ N }) ,
where N and E are the nodes and edges of the inter-procedural control flow graph starting from

E_C (denoted ICFG(EC)). entry (n) is the entry set of the statement associated with node n. Each
DFG(EC) captures the execution that starts from component C, and may involve other components

due to ICC. Each statement node is annotated with the statement entry set (the exit set is not shown

for presentation sake). In this example, Amandroid starts building the DFG from the entry point

method foo with an empty fact set. Amandroid then simulates the program statically based on each

statement’s semantics and transforms the fact sets along the way based on the flow equation (1).

Figure 8 illustrate one example. At a control-flow join point, the exit fact sets from all incoming

edges are unioned (e.g., at L7); facts such as ⟨v2, 2⟩ and ⟨v2, 5⟩ coming from the different branches

accumulate in entry (7). Similarly, one can compute entry (8). At this point, Amandroid needs to

Algorithm 2 Building Data Flow Graph (DFG)
Require: The entry point procedure, EP .
Ensure: DFG(EP)
1: procedure BuildDfg(EP)
2: icfg ≡ (N , E) ← empty graph;
3: addCFG(icfg, CFG(EP));
4: ι ← initial fact set;
5: entry← emptyMap;
6: worklist ← emptyList;
7: entry

(
EntryNodeEP

)
← ι ;

8: worklist ← worklist :: EntryNodeEP ;
9: whileworklist , empty do
10: n ← get (and deque) head from worklist;
11: nodes ← processNode(icfg, n);
12: worklist ← worklist ::: nodes;
13: return (icfg, entry);

Algorithm 3 processNode: Pushing facts to successors
Require: ICFG, icfg ≡ (N , E) and a node, n ∈ N
Ensure: n’s successor nodes whose entry are updated.

1: procedure processNode(icfg, n)
2: tempList ← empty ;
3: if n is an EntryNode or a ReturnNode then
4: for all p ∈ successors(n) do
5: entry (p) ← entry (p) ∪ entry (n);
6: tempList ← tempList :: p ;
7: else if n is an ExitNode then
8: for all p ∈ successors(n) do
9: passRequiredFactsToCaller (n, p);
10: if p gets any new fact then
11: tempList ← tempList :: p ;
12: else if n is a CallNode or a RegularNode then
13: if visit (icfg, n) = true then
14: tempList ← tempList ::: successors(n);
15: return tempList;
16: procedure visit(icfg, n)
17: if n is a CallNode then
18: (fMapForCs, factsToR) ← reslvCall (icfg, n);
19: update callees’ EntryNodes with fMapForCs;
20: update ReturnNode(n) with factsToR;
21: else if n is an RegularNode then
22: for all p ∈ successors(n) do
23: entry (p) ← entry (p) ∪ exit (n);
24: if any p ∈ successors(n) gets any new fact then
25: return true ;
26: return f alse ;
27: procedure reslvCall(icfg, n) ▷ n is a CallNode
28: calleeSet ← getCallees(entry (n), callSig(n));
29: for all M ∈ calleeSet do
30: if (EntryNodeM < N) then
31: addCFG(icfg, CFG(M));
32: E ← E ∪ (n, EntryNodeM);
33: E ← E ∪ (ExitNodeM , ReturnNode(n));
34: fToCallees ← empty;
35: factsMapForCallees ← emptyMap;
36: for all p ∈ successors(n) do
37: factsToCallee ← filterFunc(n, p, entry (n));
38: factsMapForCallees(p) ← factsToCallee;
39: fToCallees ← fToCallees ∪ factsToCallee;
40: factsToReturn← exit (n) \ fToCallees;
41: return (factsMapForCallees, factsToReturn);

resolve the target for L8’s virtual method invocation with static type A0. The first argument of the

call instruction, v2, is the receiver object. Since we now have calculated the possible points-to

values of v2 — instance 2 or instance 5, we can resolve the possible call targets precisely: A1.bar
for instance 2 and A2.bar for instance 5 (because both A1 and A2 override A0.bar). This shows the
advantage of doing a precise points-to analysis concurrently with ICFG building — not only can

we have more precise information on the call targets, but also it allows us to flow more accurate

facts to the different call targets. All of these increase the precision and can potentially reduce the

number of false alarms in the analysis results.

As shown in Figure 8, a call statement contributes a pair of CallNode and ReturnNode to the

ICFG. The CallNode connects to the callee’s EntryNode while the callee’s ExitNode connects to the

ReturnNode. In transferring facts between the caller and the callee, the variable-facts need to be

remapped to the formal parameters of the callee (e.g., v2 in the caller maps to v4 in the callee). This

should be restored when the control returns to the caller. Only heap-facts reachable from the call

parameters are passed to the callee. The unreachable heap-facts as well as unrelated variable-facts

are transferred to the ReturnNode directly to improve efficiency. In the example of L8’s method

invocation, there is one variable-fact ⟨v9, 6⟩ which is unrelated to both arguments v2 and v3. The
flow of such fact (which is unrelated to any callee) is represented as a double-head arrow from the

CallNode to the ReturnNode. Similarly, there can be some facts at the callee side that are unrelated

to the caller (e.g., callee’s local variables and temporary objects), and we filter them out at the

callee’s ExitNode to improve efficiency.

Consider the dataflow analysis for A1.bar or A2.bar, which is a callee for L8’s method invocation.

Amandroid tracks the entry of each statement of A1.bar (or A2.bar). We observe that entry(Return
8) contains heap-facts which show that field f2 of Instance 2 points to the String “abc”. This is

the effect of L10. It is interesting to see that this is not true for the same field (i.e., f2) of Instance
5 because no assignment like L10 happens inside A2.bar.

Now, we can get entry (9), and continue to process the next call similarly. The process is similar

to what we did for L8, except that we have to handle the possibility of a null receiver (because there
is no fact associated with v2.f1 for ⟨v2, 5⟩). For a virtual method statement, if the facts show that

the receiver variable maybe null, then we do not process this particular instance; instead, we only

propagate the non-null receiver instances (if any) to the callee and flag the call site as a possible

runtime error.

Algorithm for Building DFG. The algorithm for the DFG building process is formally presented as

Algorithm 2. This is a fixed-point algorithm (ref. the while loop from L9 to L13), which tracks what

points-to facts reach each statement from the given entry point (EP). The core of Algorithm 2 is L11,
which processes different type of nodes in the control flow graph, and this is formally elaborated in

Algorithm 3. Algorithm 3 presents how to process each type of node (e.g., CallNode, ReturnNode,
etc.). As an example, if it’s a CallNode, the ICFG will be expanded by including the callee graph

based on the points-to facts flowing there.

REFERENCES
[1] Android documentation: Intent and Intent Filter. http://developer.android.com/guide/components/intents-filters.html.

[2] akka. 2016. Actors. http://wala.sourceforge.net/wiki/index.php/UserGuide:CallGraph. (2016).

[3] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting Millions of Android

Apps for the Research Community. In Proceedings of the Mining Software Repositories (MSR).
[4] Andrew W. Appel. 1998. Modern Compiler Implementation in Java. Cambridge University Press.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware

Taint Analysis for Android Apps. In Proceedings of the ACM PLDI.

http://wala. sourceforge.net/wiki/index.php/UserGuide:CallGraph

[6] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the Android permission

specification. In Proceedings of the ACM CCS.
[7] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric

Bodden. 2015. Mining Apps for Abnormal Usage of Sensitive Data. In Proceedings of the ICSE.
[8] baksmali 2017. baksmali. (2017). https://github.com/JesusFreke/smali.

[9] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen, Jaeyeon Jung, Suman Nath, Rui Wang, and

David Wetherall. 2014. Brahmastra: Driving Apps to Test the Security of Third-party Components. In Proceedings of
the 23rd USENIX Conference on Security Symposium. 1021–1036.

[10] Google Bouncer. 2012. http://googlemobile.blogspot.com/2012/02/android-and-security.html. (2012).

[11] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. Analyzing inter-application communica-

tion in Android. In Proceedings of the ACM Mobisys.
[12] Cisco. 2014. Cisco 2014 Annual Security Report. http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf.

[13] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich. 2012. CRePE: A System for Enforcing Fine-Grained Context-

Related Policies on Android. Information Forensics and Security, IEEE Transactions on 7, 5 (2012), 1426–1438.

[14] DroidBench. 2015. https://github.com/secure-software-engineering/DroidBench.

[15] MatthewBDwyer, JohnHatcliff,MatthewHoosier, Venkatesh Ranganath, Robby, and ToddWallentine. 2006. Evaluating

the effectiveness of slicing for model reduction of concurrent object-oriented programs. In Proceedings of the TACAS.
[16] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An empirical study of cryptographic

misuse in Android applications. In Proceedings of the ACM CCS.
[17] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. 2010.

TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones.. In Proceedings
of the USENIX OSDI.

[18] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.

2014. TaintDroid: An information flow tracking system for real-time privacy monitoring on smartphones. Commun.
ACM 57, 3 (2014), 99–106.

[19] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith. 2012. Why

Eve and Mallory love Android: An analysis of Android SSL (in) security. In Proceedings of the ACM CCS.
[20] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. 2011. A survey of mobile malware

in the wild. In Proceedings of the ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.
[21] Stephen Fink and Julian Dolby. 2012. WALA–The TJ Watson Libraries for Analysis. http://wala.sf.net/.

[22] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves le Traon, Damien

Octeau, and Patrick McDaniel. 2013. Highly Precise Taint Analysis for Android Application. Technical Report. EC
SPRIDE.

[23] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. AndroidLeaks: Automatically detecting potential

privacy leaks in Android applications on a large scale. In Proceedings of the International Conference on Trust and
Trustworthy Computing.

[24] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and Martin C Rinard. 2015.

Information Flow Analysis of Android Applications in DroidSafe. In NDSS. Citeseer.
[25] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic Detection of Capability Leaks in Stock

Android Smartphones. In Proceedings of the NDSS.
[26] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad Reza Sadeghi. 2012. Unsafe exposure analysis of mobile in-app

advertisements. In Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile Networks.
[27] ICC-Bench. 2017. https://github.com/fgwei/ICC-Bench.

[28] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using Spark. In Proceedings of the Compiler
Construction.

[29] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric

Bodden, Damien Octeau, and Patrick Mcdaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android

Apps. In Proceedings of the 37th International Conference on Software Engineering (ICSE 2015).
[30] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX: Statically vetting Android apps for

component hijacking vulnerabilities. In Proceedings of the ACM CCS.
[31] McAfee. 2014. Who’s Watching You? http://www.mcafee.com/us/resources/reports/

rp-mobile-security-consumer-trends.pdf.

[32] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer.
[33] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon.

2013. Effective Inter-component Communication mapping in Android with Epicc: An Essential Step towards Holistic

Security Analysis. In Proceedings of the USENIX Security Symposium.

http://googlemobile.blogspot.com /2012/02/android-and-security.html
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://github.com/secure-software-engineering/DroidBench
https://github.com/fgwei/ICC-Bench
http://www.mcafee.com/us/resources/reports/rp-mobile-security-consumer-trends.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-security-consumer-trends.pdf

[34] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. 2012. Semantically rich application-

centric security in Android. Security and Communication Networks 5, 6 (2012), 658–673.
[35] Nicholas J Percoco and Sean Schulte. 2012. Adventures in Bouncerland. Black Hat USA (2012).

[36] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna. 2014. Execute this!

Analyzing unsafe and malicious dynamic code loading in Android applications. In Proceedings of the NDSS. 23–26.
[37] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting runtime values in android

applications that feature anti-analysis techniques. In Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS).

[38] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.

In Proceedings of the ACM Symposium on Principles of Programming Languages.
[39] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural dataflow analysis with applications to

constant propagation. Theoretical Computer Science 167, 1 (1996), 131–170.
[40] Stephen Smalley and Robert Craig. 2013. Security enhanced (SE) Android: Bringing flexible MAC to Android. In

Proceedings of the NDSS.
[41] Sophia. 2014. Security Threat Report 2014: Smarter, Shadier, Stealthier Malware. https://www.sophos.com/en-us/

medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf.

[42] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur Khan. 2014. SMV-HUNTER: Large Scale,

Automated Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps. In Proceedings of the NDSS.
[43] Symantec. 2015. Internet Security Threat Report. https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_

GA-internet-security-threat-report-volume-20-2015-social_v2.pdf.

[44] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015. CopperDroid: Automatic Recon-

struction of Android Malware Behaviors. In Proceedings of the NDSS.
[45] TrendMicro. 2014. TrendLabsSM 1Q 2014 Security Roundup. http://www.trendmicro.com/cloud-content/us/pdfs/

security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf.

[46] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville, and Vijay Sundaresan. 2000.

Optimizing Java bytecode using the Soot framework: Is it feasible?. In Proceedings of the Compiler Construction.
[47] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick Tague. 2014. A5: Automated

Analysis of Adversarial Android Applications. In Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices (SPSM ’14). 39–50.

[48] WALA. 2014. WALA documentation: CallGraph. (2014).

[49] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized origin crossing on mobile platforms:

Threats and mitigation. In Proceedings of the 2013 ACM CCS.
[50] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep Ground Truth Analysis of Current

Android Malware. In Proceedings of the 14th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment. Springer, Bonn, Germany.

[51] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A precise and general inter-component data

flow analysis framework for security vetting of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Scottsdale, AZ, 1329–1341.

[52] Wikipedia. 2016. Actor model. https://en.wikipedia.org/wiki/Actor_model. (2016).

[53] Rubin Xu, Hassen Saïdi, and Ross Anderson. 2012. Aurasium: Practical policy enforcement for Android applications.

In Proceedings of the USENIX Security Symposium.

[54] Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for

Dynamic Android Malware Analysis.. In USENIX Security Symposium. 569–584.

[55] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android malware: Characterization and evolution. In Proceedings of the
IEEE SP.

[56] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get off of My Market: Detecting Malicious Apps

in Official and Alternative Android Markets. In Proceedings of the NDSS.

https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-cybercrime-hits-the-unexpected.pdf
https://en.wikipedia.org/wiki/Actor_model

	Abstract
	1 Introduction
	2 Motivating Example
	3 The AMANDROID Approach
	3.1 IR Translation
	3.2 Environment Modeling
	3.3 Component-Based Analysis
	3.4 Using Amandroid for Security Analyses

	4 Component-Based Analysis
	4.1 Component-Level Data Flow Graph
	4.2 Building the Component-Level Data Dependence Graph
	4.3 Linking Inter-component Data Flows
	4.4 Building App-level Data Dependence Graph
	4.5 Inter-app Analysis

	5 Implementation
	6 Experimentation and Evaluation
	6.1 RQ1: How does the running time of Amandroid scale?
	6.2 RQ2: Over accuracy metrics how Amandroid compares with other existing static analysis tools for Android apps?
	6.3 RQ3: Is Amandroid capable of discovering crucial security issues to aid in real-world app vetting?
	6.4 RQ4: How much effort does it take to build a new analysis on top of Amandroid core framework?

	7 Related Work
	8 Conclusions
	References

