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ABSTRACT
Clustering has been well studied for desktop malware analysis
as an effective triage method. Conventional similarity-based
clustering techniques, however, cannot be immediately ap-
plied to Android malware analysis due to the excessive use of
third-party libraries in Android application development and
Android application repackaging techniques. For example,
two Android malicious apps from different malware families
may share high level of overall similarity if both apps include
the same popular libraries or both apps are repackaged based
on the same original app.

In this paper, we propose novel malicious payload mining
techniques to efficiently perform Android malware cluster-
ing. In particular, we design a robust method to precisely
exclude legitimate library code from Android malware while
retaining malicious code segments, even if the malicious code
is injected under popular library names. We design and
implement an Android malware clustering approach through
iterative mining of malicious payload and checking whether
malware samples share the same version of malicious pay-
load. Our approach utilizes traditional hierarchical clustering
technique and an efficient fuzzy hashing fingerprint repre-
sentation. We also develop three optimization techniques to
significantly improve the scalability, and our performance
evaluation confirms the applicability of our approach in an-
alyzing a large scale of malware families with little or no
accuracy impact. To evaluate the overall performance, we
first leverage VirusTotal reports, clustering techniques, and
manual efforts to separate collected malware samples into
260 sub-families; then constructed 10 testing datasets by
shuffling the sub-families and randomly select 30 sub-families
for each dataset. When applying the proposed clustering
approach on the 10 testing datasets constructed as described
above, the experimental results demonstrate that the pro-
posed clustering approach achieves average precision of 0.984
and recall of 0.959.

Keywords
Android Malware, Clustering, Fingerprints, Malicious Pay-
loads, Fuzzy Hashing

1. INTRODUCTION
Similar to the trends that have been observed in the desk-

top malware analysis domain, security companies are receiv-
ing an increasing amount of potentially malicious Android
apps everyday [24]. It becomes infeasible for security analysts
to manually study Android malware families with a large

number of samples, and automatic malware scanning typi-
cally requires considerable amount of computing resources
and may not be able to detect the latest evolving threats.
Recent research has shown that clustering analysis can be an
effective approach to triage incoming samples. For example,
multiple static [13, 15, 17, 18, 28], dynamic [1, 22, 26], and
hybrid [14, 27] analysis based clustering techniques have been
proposed in the desktop malware domain.

However, conventional similarity-based clustering tech-
niques cannot be immediately adopted for the Android mal-
ware analysis domain due to several challenges faced in An-
droid domain. Android applications often include a variety
of third-party libraries to implement extra functionalities in
a cost-effective way. We measure the library code proportion
of 19,738 labeled malware samples, and note that the ratio
of library code to every malware sample is at least 31.5%,
this means a large portion of Android applications belongs
to libraries. Directly applying overall similarity analysis on
those applications can generate imprecise results: malicious
samples from different malware families may be clustered
together simply because they share the same libraries.

A common approach for handling legitimate libraries dur-
ing Android malware analysis is to use a naming based white-
list [3, 4, 5, 8, 11] to exclude all libraries code. However, as
demonstrated in this paper, such solution is still problematic
in that attackers can disguise their malicious payloads under
popular library names to take advantage of the popularity
of legitimate libraries. For example, we note that malware
authors inject their payload under popular library names,
such as com.google.ssearch, com.android.appupdate, and
com.umeng.adutils. Consequently, the white-listing ap-
proach would unintentionally remove certain real malicious
payloads together with legitimate libraries code from analysis.
Our analysis confirmed that about 30% of Android malware
families actually try to inject their malicious payload under
popular libraries.

Ubiquitous library usage and the readily available repack-
ing tools bring in additional challenges for Android malware
analysis due to the relative small code size of the malicious
payloads. We analyze the ratio of the core malicious pay-
loads1 to the entire apps for the labeled 19,738 malware
samples, and observe that such ratio is between 0.1% and
58.2%. This means that the real content of the malicious
payloads is comparatively small, which makes traditional
similarity analysis based clustering approach less effective.
For example, two malicious samples from different families

1Malicious payload identification and extraction are discussed
in Section 2.3.2.



can be repackaged based on the same original benign app,
thus presenting high level of overall similarity. Likewise,
Android malware variants with the same malicious payload
of one family can be repackaged on different original benign
apps, thus presenting low level of overall similarity.

Moreover, it is also challenging to achieve precise mal-
ware family labeling and to prepare ground truth labeled
datasets for clustering analysis [21]. For example, we col-
lect 247,932 potentially malicious Android samples, each of
which has at least one malicious flag according to VirusTo-
tal [25] reports as of April 18, 2016; however, only 19,738
(8%) of them have consistent anti-virus labels indicating
their corresponding malware family names. We frequently
see the following generic labels reported by various anti-
virus products: Suspicious, Artemis!XXX, Unclassified-

Malware, PUA (Potentially Unwanted Application), and
Trojan.AndroidOS.Generic. In practice, anti-virus products
can detect the maliciousness of target apps by checking for
the presence of specific behaviors; however, different Android
malware families may present similar malicious behaviors
(e.g., hiding app icon and sending out premium SMS mes-
sages). Therefore, we need to consolidate multiple antivirus
scanning results to achieve precise malware family labeling.

In this work, we design a robust method to precisely ex-
clude legitimate library code from Android malware while
retaining malicious code segments, even if the malicious code
is injected under popular library names. We design and
implement an Android malware clustering approach through
iterative mining of malicious payload and checking if the
malware samples share the same version of the malicious
payloads. For simplicity, we refer to the core malicious
code segments of an Android malware sample as malicious
payloads, and a payload can be an added/modified part of
the repackaged Android malware. For standalone Android
malware, we consider its majority code, except for legiti-
mate library code, as its malicious payload since standalone
malware is often based on the same skeleton code and the
malicious functionalities may only be triggered under specific
context.

Our main contributions are summarized as follows:

• We design a novel method to exclude legitimate library
code from Android apps. It is well-known that attack-
ers can inject their malicious payload under existing
libraries, however there is no existing solution to re-
liably distinguish between a legitimate library and a
bogus library that share the same library name. Our
techniques precisely remove legitimate libraries from
an app and still preserve the malicious payloads even
if they are injected under popular library names. It
can also be used to pinpoint the differential parts to
extract the core malicious code segments.

• We propose an Android malware clustering solution
by checking if they share the same version of the ma-
licious payloads. By providing the shared malicious
payloads within a payload cluster and payload-to-app
association information, our approach offers efficient
Android malware app clustering along with fundamen-
tal insights of malware grouping. The experimental
results demonstrate the effectiveness of our solution in
practice.

• We conduct extensive experiments to evaluate the con-
sistency and robustness of the proposed clustering so-

lution. We first leverage VirusTotal reports, clustering
techniques, and manual efforts to separate collected
malware samples into 260 sub-families; then construct
10 testing datasets by shuffling the sub-families and ran-
domly selecting 30 sub-families for each dataset. Our
experimental results demonstrate that our clustering
approach achieves average precision of 0.984 and recall
of 0.959 with regard to the testing datasets.

2. OVERVIEW AND BASIC TECHNIQUES
In this section, we describe the necessary technical back-

ground of our work and the overall workflow to perform
Android malware clustering.

2.1 Overall Workflow
As illustrated in Figure 1, the overall workflow for con-

ducting Android malware app clustering is as follows:

Library
Code 

Removal

Candidate 
Payloads 

Extraction

Malicious 
Payloads 
Mining

Malicious
Payload 

Verification

Android
Malware
 Samples

Malware
Clustering

Results

Library list tuning

1 2 3

4

Figure 1: Overall workflow for app clustering

Step 1: Library Code Removal: We design a novel
approach to remove legitimate library code from Android
apps. Unlike the simple naming based white-list method,
our approach can safely exclude legitimate library code while
retaining malicious code segments, even if the malicious code
is injected under popular library names. We discuss the
details of the library code removal technique in Section 2.3.1.

Step 2: Candidate Payload Extraction: After re-
moving the popular library code, we consider the shared code
between each malware sample pair as one version of candidate
malicious payload. At the same time, the payload-to-app
association information is recorded.

Step 3: Malicious Payload Mining: We then apply
clustering analysis of the candidate payloads and iterative
mining to obtain meaningful shared code patterns that are
most likely to be malicious payloads according to several
factors, such as code size, sharing frequency, and so on. The
malicious payload mining results and the payload-to-app
association information are combined to derive app clustering
output.

Step 4: Malicious Payload Verification: A less pop-
ular library code may be included in the malicious payload
mining results, then certain apps may be clustered together
because of their shared usage of the library. We generate a
summary output of the major classes and functions for each
malicious payload cluster, which is then used as supportive
evidences for app clustering results. Through manual verifi-
cation results, the official library list is updated accordingly.

The same procedure is conducted on benign Android appli-
cations to acquire the initial library list, and the process will
terminate when no meaningful shared code can be further
mined.

2.2 Fuzzy Hashing Fundamentals



We utilize nextGen-hash [20] to represent an Android app,
including library code and a malicious payload, as a bit-
vector fingerprint using n-gram features and feature hashing
techniques. The overall procedure to generate a fuzzy hashing
fingerprint of an Android app is illustrated in Figure 2 where
we list 3 simplified 5-gram features of disassembled Dalvik
opcodes sequences.
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invoke-virtual, iput-object, move-
result;
 ..

N-gram Features 
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Figure 2: Fuzzy hash fingerprint generation procedure

Specifically, we use Dexdump [7] to disassemble classes.dex
into Dalvik bytecode, and extract n-gram features from disas-
sembled bytecode sequences, then apply feature hashing [17]
to map each n-gram feature into one bit in a large bit-vector,
and the final bit-vector fingerprint is used to represent an
app, and we use the bit-wise intersection analysis capability
provided by the bit-vector to achieve library code removal,
malicious payload extraction and malware sample clustering.
We also keep track of feature-to-bit mapping information,
and use it to reconstruct the original payload code from the
target bits.

We extract various representative information as a feature
set, and use bytecode opcode sequences as main features.
Within the disassembled bytecode sequences, “function in-
vocation” instructions are the basis to construct a complete
function call graph. We include their corresponding class
names, invoked popular function names, and input and out-
put signatures as another source of features. In order to pre-
vent overfitting, we restrict the class names to widely shared
entries, such as the classes that are defined under Android
core libraries and Java core libraries, and only include the
function names that are defined under such popular classes
because they do not usually change among applications. For
the rest of classes and functions, we replace the concrete
names with placeholders considering that they may easily
change. Besides widely shared class names under popular
core libraries, we also collect the Java VM’s representation
of type signatures as features. For example, Z for Boolean, B
for byte, and [ for array types, and so on. These signatures
are often located within function invocation instructions and
“object field operation” instructions, such as the operand for
iget, iput, sget and sput opcodes. For the rest of opcodes,
we also include the string value of const-string based on
the observation that strings used by a particular family tend
to be distinctive.

After generating the bit-vector fingerprints, we then use bit-
wise Jaccard similarity [17] function to check the similarity
of fingerprints, and use the 1-bits containment ratio [16]
between two fingerprints as containment analysis function.

2.3 Fingerprint based Basic Operations
In this paper, we extensively exploit the bit manipulation

capability provided by the bit-vector fingerprint represen-
tation as the technical foundation for subsequent analysis.

Particularly, we design the following two fingerprint based
basic operations (a) to remove the library related bits from
an app fingerprint and (b) to extract the shared bits as one
version of candidate payload fingerprint.

2.3.1 Library code removal
Android apps often use various modularized libraries, such

as Android system libraries, Java common libraries, and third
party advertisement libraries. Existing malware analysis
techniques either take no special actions or ignore all library
code based on whitelisted library names. However, when an
attacker injects malicious payloads under popular libraries,
such as android.ad.appoffer, a näıve whitelisting approach
may result in imprecise analysis result. In order to reliably
extract malicious payloads from labeled malware samples,
we precisely exclude legitimate library code from each app
while keeping potentially malicious payloads that are injected
under the same legitimate library names.

Overall, we exclude legitimate library code from each app
by removing the “library-mapped” bits from the app bit-
vector fingerprint. For each legitimate libraries, we collect
the official jar file and disassemble them into Dalvik bytecode
sequences; then use the same feature hashing technique to
map the n-gram features of the library code sequences into
a 256KB fuzzy hashing fingerprint.

In our implementation, each library is represented with
an individual fingerprint while multiple versions of the same
library are encoded together. For example, a single library
fingerprint of twitter4j eventually contains multiple ver-
sions of twitter4j libraries. For each Android sample, we
examine the application and get the contained library name
list, and then remove the corresponding library bits from the
app fingerprint.

Similar to application fingerprint generation, we map the
library n-gram features into bit 1 in a bit-vector fingerprint
fplib that is initialized with bits 0. We then flip all the bits
in the library fingerprint to get ¯fplib. Since the same library
features contained in Android application are mapped to bit
1 in the app fingerprint, the bit-flipped library fingerprint
representation enables us to exclude “library-mapped” bits
from app fingerprint through intersection analysis between
the app fingerprint and library fingerprint. The rest 1-bits
in library fingerprint ensure all other non-library bits of app
fingerprint intact.

Figure 3 demonstrate the overall procedure to safely re-
move legitimate twitter4j library code from a malware
sample. The cells in the fingerprint are either bit 0 or bit
1, indicating whether the corresponding application has a
specific feature or not; the underlying number indicating
the bit indexes, a feature is mapped to a specific bit index
according to feature hashing results. Whenever the malware
sample uses any version of the legitimate twitter4j library,
the intersection analysis between the app fingerprint and li-
brary fingerprint will safely remove the corresponding library
code from app, while still retaining the potentially malicious
code injected under the library namespace. The intersec-
tion analysis is only applied when we found the app indeed
contains code segments that are defined under twitter4j

library namespace.
The official libraries are collected incrementally through

statistical analyzing of the 19,738 labeled malware samples
and clustering analysis of 20000 randomly selected benign
apps. We prepare an initial set of libraries by statistically
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Figure 3: Example procedure to safely remove legitimate
“twitter4j” library code

analyzing malware samples and manually select the top 60
widely shared libraries. Our Android malware clustering
approach is based on malicious payload mining results. The
less popular libraries may be also shared by multiple sam-
ples and eventually extracted as one version of payload. To
remedy the problem, we apply the clustering procedure on
benign apps to extract significant shared code patterns and
add them to the library list since the majority shared pay-
loads among benign apps are likely legitimate libraries. The
clustering procedure is repeatedly applied on 1000 sampled
benign apps until convergence2 where no more significant
payload could be extracted.

We collect the majority of official libraries through the
library mining process on benign apps except for a few new
libraries. This iterative library extracting process also enables
us to extract certain generic and legitimate code patterns
such as the base64 encoding and decoding routine. Since it
is infeasible to cover all of the existing legitimate libraries
especially for analyzing unseen Android malware samples,
we include an optional malicious payload verification process
as shown in Figure 1.

It is likely that multiple versions of the same library are
used by different Android applications. The specific version
of a library can be located by searching its representative
class or function names, examining the contained library
code structure, or checking its version related definitions.
Once we identify a new version of the library is being used,
we map the new version library code to the existing library
fingerprint that has the same library name.

Note that the added new library code will be checked
against the samples that indeed contain one version of the
library, and the potential feature collision may happen be-
tween the application code and irrelevant versions of the
library code. However, since different versions of the same
library typically share high level of code similarity due to
code reuse, and the size of the single library is often smaller
than the entire application, the collision rate between the
application code and irrelevant versions of the library code
is negligible.

2.3.2 Candidate Payload Extraction
The next fingerprint based basic operation is to extract

malicious payload from labeled malware samples. We con-
sider the shared code segments (after excluding legitimate
libraries) between each malware sample pair to be a candidate
malicious payload.

For the target samples, we first convert the samples into
bit-vector fuzzy hashing fingerprints, and then apply the

2The resulting cluster fingerprint has less than 70 1-bits or
the largest app cluster contain less than 10 entries.
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Figure 4: Extracting a candidate payload from two malware
applications

library code removal process whenever needed. We conduct
intersection analysis between every library-excluded sample
fingerprint pair, and consider the shared 1-bits between the
sample fingerprints as a candidate payload fingerprint. Note
that the resulting candidate payload fingerprints may do not
contain any bit 1 if two underlying sample fingerprints have
no shared code.

Figure 4 describes the intersection analysis procedure for
extracting one candidate malicious payload at the high level.
From two malware samples from malware family A, we first
build fuzzy hashing fingerprints of both samples and exclude
the legitimate library bits from app fingerprints, and then
pinpoint their shared 1 bits (e.g., bits index 2, 3, and 4) as
potentially malicious bits (e.g., malicious payload mapped)
and represent them in a separate payload fingerprint.

After extracting the malicious bits from app fingerprints,
we eventually reconstruct the corresponding malicious pay-
load code by checking the feature-to-bit mapping information
that are stored during feature hashing process. Particularly,
we map an identified bit 1 to an n-gram feature, locate the
n lines of code where the n-gram feature are extracted, and
reconstruct complete malicious code sequences by stitching
the identified n lines of code segments together. This payload
code reconstruct procedure helps to recover n lines of code
from each feature for every identified 1-bit, to certain extent
it compensates feature hashing collisions (e.g., resulting in
missing n-grams) since each n-gram feature can be used to
recover n line of original code sequences.

Since we can generate a candidate payload from each mal-
ware app pair, the candidate payload extraction procedure

will create a total of n×(n−1)
2

candidate fingerprints for n
malware samples. During the candidate payload extrac-
tion procedure, we keep track of the association information
between the candidate payload (e.g, A1-2) and the corre-
sponding samples (e.g., A1 and A2). We subsequently use the
payload-to-app association information and the malicious
payload mining results to group malware samples.

3. ANDROID MALWARE CLUSTERING
We conduct hierarchical agglomerative clustering on all of

extracted candidate payload fingerprints, so that all similar
versions of candidate payload fingerprints will be grouped
together. In order to let the real malicious payloads standing
out from the rest of extracted candidate payloads, we design
a iterative malicious payload mining strategy based on our
malware analysis experiences.

Figure 5 shows the overall clustering analysis procedure
among five malware samples. Within the Figure, “Library
code removal” is applied during app fingerprint generating
process whenever needed, “Candidate payload verification”
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Figure 5: Overall clustering analysis procedure among five malware samples.

is conducted on the reconstructed malicious payload code,
they are omitted in the Figure for simplicity. We describe
the major steps in more details as follows:

Step 1: we convert malware samples into bit-vector fuzzy
hashing fingerprints, and represent them as fp1, fp2, fp3,
fp4, fp5 accordingly. The library removal process is applied
to fingerprint generation if the sample uses any legitimate
libraries.

Step 2: we conduct intersection analysis to extract the
shared 1-bits between every malware fingerprint pair, and
consider each version of the shared 1-bits as a candidate
payload fingerprint. The payload to sample association infor-
mation are recorded during the analysis. For example, fp1-2
indicates this candidate payload is extracted from malware
sample 1 and 2.

Step 3: we perform hierarchical clustering analysis on all
generated candidate malware payload fingerprints. As shown
in the Figure, candidate payload fingerprints fp1-2, fp1-3,
fp2-3 are grouped together as the largest payload cluster
based on overall similarity.

Step 4: we iteratively select representative malicious pay-
load clusters using the selecting strategy discussed earlier.
For instance, candidate payload cluster containing fp1-2, fp1-
3, fp2-3 is selected first because it has the largest cluster
size. Candidate payload fingerprints fp1-4, fp1-5, fp2-4, fp2-5,
fp3-4, fp3-5 are then skipped as “inactive” entries, since we
only expect to extract one version of malicious payload from
each malware sample, and the malicious payload for mal-
ware sample 1, 2 and 3 has already been recovered through
previously selected representative payload cluster. fp4-5 is
skipped since it is the only entry in the payload cluster after
the updates.

Step 5: we retrieve the malware apps associated with
each payload cluster and group them as one app cluster,
in which they share the same version of malicious payload.
For example, malware samples 1, 2, 3 are grouped together
based on candidate payload cluster that contains fp1-2, fp1-3,
fp2-3. The corresponding cluster fingerprint for this version
of malicious payload is the intersection of all the candidate
payload fingerprint entries in the cluster.

We automatically reconstruct the malicious payload code
(e.g., Dalvik code sequences with corresponding class and
function name) according to the cluster fingerprint and the
feature-to-bit mapping information stored during sample fin-
gerprint generation process. The reconstructed malicious
payload code can be manually verified to make sure they
are indeed the malicious components. Each version of the

extracted payload usually has similar classes names and
Dalvik code sequences, we note that the maliciousness of
the extracted payload can usually be spot by checking the
extracted class names, more detailed malicious payload veri-
fication results are included in 4.3. In case if the class names
are not enough to make a decision, we then go through the
reconstructed code segments and check if there are any sus-
picious activities or behaviors such as stealthily sending out
premium SMS, etc.

3.1 Malicious Payload Mining
In practice, thanks to the low collision property of feature

hashing, malware samples fingerprints will not contain large
number of shared 1-bits unless they do share certain common
features (e.g., payload code snippets). Likewise, if the target
dataset contains malware samples that do share the same
version of malicious payload, then the candidate payloads
fingerprints extracted from those samples will contain similar
1-bits, thus will be automatically clustered into the same
group. After removing legitimate library code from each app,
similar malicious payloads will have highest opportunity to
form a comparatively larger cluster than the payloads that
related to less popular libraries or completely random shared
code segments. And compared with other randomly shared
code segments, similar malicious payloads will have a larger
shared code base because of “legitimate” reason of code reuse
in the same malware family, and the fingerprints for those
malicious payloads will have larger number of shared 1-bits.

After obtain hierarchical clustering results with predefined
threshold θ = 0.75, we design the following strategies to
iteratively select the representative candidate payload clus-
ters that are most likely to contain really malicious payloads
based on the above mentioned observations:

• We count the candidate payload fingerprint entries in
each cluster, and maximize the possibility of extract-
ing core malicious payloads by selecting the clusters
with the largest number of payload fingerprint entries.
Payload cluster size l is good indicator for popularity
of the shared code segments between malware samples,
and the popular shared code is a good candidate for
being one version of malicious payload, since we have
already filtered out the popular legitimate library code.

• We calculate the distinct apps m that contribute to
generating candidate payload fingerprints of each clus-
ter, and select the clusters with largest number of
distinct apps if they have same number of payload en-



tries. Payload clusters that contain large number of
unique payload entries are usually associated with large
number of distinct apps, and we use this information to
break the tie in case if the number of cluster entries are
the same, since distinct apps can be viewed as another
sign of comparative popularity.

• We obtain the intersection bits k of payload fingerprint
entries in each cluster as the cluster fingerprint. If two
clusters are associated with the same number of distinct
apps, we then select the one with the larger number
of 1-bits in its cluster fingerprint. In this way, we can
extract payload with larger code size, and it helps to
increase the likelihood of getting malicious payloads
together with shared libraries, and we can subsequently
exclude libraries later.

• During the cluster selection procedure, we keep track
of which apps have been used to generate candidate
payload fingerprints in previously selected clusters, and
consider already selected apps as “inactive”. We update
the remaining payload clusters by removing candidate
fingerprint entries that are associated with “inactive”
apps. Skipping such fingerprints forces us to extract
one version of malicious payload from each app, and
helps us to reduce the probability of extracting other
payload that are mainly related to less popular libraries
or other randomly shared code segments.

• We omit the payload cluster if the corresponding cluster
fingerprint contains minimum (e.g. k = 70) number of
1-bits, this means the extracted code segments are very
small. It forces the algorithm to break current large
payload cluster into smaller size clusters, and prevent
the situation in which multiple malware families are
clustered together and we only extract the very small
size shared code between different malware families. We
also skip the candidate payload cluster if it becomes
empty after the updates in last step or if the number
of payload fingerprint entries (e.g., l = 1) are too small.
This is because clusters with only one candidate payload
entry could not provide additional payload sharing
information and are more likely to be less popular
libraries or other randomly shared code snippets, we
consider malware samples associated with such payload
clusters as unclustered.

It is worth to mention that the malicious payload mining
procedure employs several thresholds, such as clustering
threshold θ, the minimum payload cluster size l, minimum
cluster fingerprint 1-bits k. The specific values for those
thresholds are a trade-off between false positives and false
negatives of finding meaningful (e.g., large enough in size)
and correct (e.g., non-random shared code snippets) version
of shared payload, and we opted for accuracy of the final
results by allowing unclustered samples. The optimal values
are obtained from the library extraction procedure when
applied on benign apps.

Generally speaking, the shared payload between Android
samples may be library code, malicious payload, copy pasted
code segments, or other randomly shared code segments, .etc.
The above malicious payload mining strategy enables us to
select candidate payload groups that are most likely to be
malicious.

3.2 Optimize Fuzzy Hashing based Clustering
According to the previously discussed malicious payload

mining procedure, we will generate n×(n−1)
2

versions of can-
didate payload fingerprints given n malware samples, and
the hierarchical clustering algorithm has a quadratic com-
plexity with respect to the number of analyzing targets. Due
to the overall quartic complexity of the algorithm, directly
using it to analyze large number of samples becomes a time-
consuming task. Therefore, we further develop three methods
to improve the scalability of the malicious payload mining
procedure, and hereafter refer them as Opt-1, Opt-2, and
Opt-3.

3.2.1 Opt-1: Reduce Unnecessary Computation
With hierarchical agglomerative clustering, each object

starts in its own cluster, and two objects are compared and
merged into one cluster if their similarity score is above
predefined threshold θ.

We reduce unnecessary pairwise comparisons by exploiting
the Jaccard similarity function and clustering analysis proce-
dure at the same time. The Jaccard similarity is defined as
the size of intersection divided by the size of the union of two
sets. Suppose that we have two sets A and B, and they have n
and k × n (k > 1) elements respectively. Since A and B have
different number of elements, the Jaccard similarity between
two sets is maximized when all the elements of smaller set A
are contained in set B, where the intersection size becomes n
and the union size becomes k × n. The maximum Jaccard
similarity is therefore 1

k
. For example, if the size ratio of two

sets is greater than 2 or smaller than 1
2
, then their Jaccard

similarity score will be lower than 0.5; thus we do not need
to compare them for clustering with threshold 0.5.

Since our fuzzy hashing fingerprint is essentially a set
where each 1-bit represents a particular n-gram feature, we
determine that we only need to compare fingerprint pairs
whose 1-bit size ratio is between θ and 1

θ
when clustering

with threshold θ, because the Jaccard similarity score will
be lower than θ for the other pairs. Based on the above
reasoning, Opt-1 will not impact accuracy at all.

3.2.2 Opt-2: Optimize Each Pairwise Computation
Another approach to speedup the overall fuzzy hashing

based clustering process is to optimize each pairwise compu-
tation. Broder proposed minHash [2] to quickly estimate the
Jaccard similarity of two sets without explicitly computing
the intersection and the union of two sets. By considering
our bit-vector fingerprint as a set, we apply minHash to
further transform a large fingerprint into a smaller size sig-
nature, and calculate the similarity of minHash signatures to
estimate the Jaccard similarity of the original fingerprints.

To apply minHash, we define a minHash function value of
our bit-vector fingerprint h(FP ) to be the first non-zero bit
index on a randomly permutated bits order of the fingerprint.
We then apply the same minHash function to two fingerprint
FPa and FPb. We have the same value when the two finger-
prints have the same bit index set to 1 and the bit index is the
first non-zero bit for the current permutation. Since the prob-
ability that the firstly encountered bit is a non-zero bit for
both FPa and FPb is the same as Similarity(FPa, FPb) [19],
we use the probability to estimate the original Jaccard simi-
larity Pr[h(FPa) = h(FPb)] ≈ Similarity(FPa, FPb).

The probability estimation becomes more accurate if more
independent minHash functions are used together. Formally,



we define a minHash signature sig(FP ) to be a set of k
minHash function values extracted from k round of random
permutations over the fingerprint, and represent it as follows:
sig(FP ) = [h1(FP ), h2(FP ), ..., hk(FP )]. We denote the
similarity of two minHash signatures as the ratio of equal
elements between sig(FPa) and sig(FPb).

Instead of maintaining k random permutations over the
bit-vector, we follow a common practice for using minHash
technique and use k different hash functions to simulate
k random permutations, where each hash function maps a
bit index to a value. In order to create k hash functions,
we first generate k random numbers, then use FNV [10]
hash algorithm to produce a basic hash output for each
bit index, and finally apply XOR operation between each
random number and the hash output to get the k hash
outputs. For each hash function, we select the smallest hash
value (to simulate the first non-zero bit index) over all of
the bit indexes of the fingerprint as the final hash output.
Note that the FNV hash value and the k random numbers
are all 32 bits unsigned integers, and they can be used to
safely simulate random permutation over 512MB bit-vector
fingerprint. In practice, the k value usually needs to be larger
than 100 to generate good enough results [19]. We set k to
be 256 in our experiments, and thus convert each 256KB
fuzzy hashing fingerprint into a 1KB minHash signature.

In order to evaluate the potential impact of Opt-2 on
accuracy, we conduct two experiments on the smallest 50
malware families3: one experiment (Exp-1) using Opt-1 only,
and another experiment (Exp-2) using both Opt-1 and Opt-2.
We used the clustering output from Exp-1 as a reference, and
measured the precision and recall of the clustering output
from Exp-2. The precision and recall indicate how similar
the two experiments results are, and are used to check the
impact on accuracy brought by Opt-2. Our experiments
showed that on average Exp-2 took less than 83% time to
complete compared to Exp-1 for each family, and the average
precision and recall for the analyzed 50 families were 0.993
and 0.986. This demonstrates that Opt-2 has almost zero
accuracy penalty.

3.2.3 Opt-3: Employ approximate clustering
The previous two speed improvements are still not suffi-

cient for using the algorithm to analyze large scale malware
samples. For instance, when analyzing with 2,121 samples,
the algorithm will create 2,248,260 shared payloads, and it re-
sults in approximately 2.5 × 1012 pairwise comparison. Even
1% of the total comparison (after the previous two speed
optimizations) still takes lots of computation resources. To
resolve the scalability issue for a large dataset input, we fur-
ther develop prototype-based clustering technique to achieve
approximate clustering.

Specifically, we divide the target samples into small size
(e.g., 150) groups. For each group, we apply hierarchical
clustering analysis on the shared payload within the group,
and create a prototype fingerprint for each payload cluster
by applying intersection analysis (to obtain all the shared
1-bit) among the payload fingerprints in each cluster. We
then conduct hierarchical clustering analysis on all the col-
lected prototype fingerprints. In this way, we represent a
group of similar payload fingerprints with a single prototype

3we select those families since their maximum family size is
under 100 and all the experiments for those families can be
finished within 1 hour

fingerprint, and the algorithm proceeds with approximate
clustering analysis using the prototype fingerprints instead
of the original payload fingerprints. Note that Opt-1 and
Opt-2 are complementary to the prototype-based clustering
analysis.

We design two experiments to evaluate the impact of Opt-3
on accuracy: one experiment (Exp-3) using Opt-1 and Opt-2,
and another experiment (Exp-4) using Opt-1, Opt-2, and Opt-
3. Due to the quartic complexity of the original algorithm,
the overall analysis (using Opt-1 and Opt-2 only) will get
dramatically slower for analyzing larger number of malware
samples, and it quickly gets worse when the target samples
are more than 2000. For instance, we found it takes about
one day to analyze 2000 samples and more than ten days
to analyze 3000 samples for Exp-3. In order to conduct the
evaluation within reasonable amount of time, we randomly
select 70% of labeled samples from the largest 4 malware
families and conduct the two experiments for each family. We
used the clustering output generated by Exp-3 as reference,
and measured the precision and recall of the clustering output
generated by Exp-4 to evaluate the accuracy impact brought
by Opt-3.

Table 1: Accuracy impact of prototype based clustering

Family Analyzing Time taken
Precision Recall

Name Size Exp-3 Exp-4

Plankton 1208 20h42min 54min 0.986 0.970
Adwo 1891 22h11min 1h8min 0.945 0.921

Fakeinst 2197 24h35min 32min 0.932 0.915
Dowgin 2296 28h24min 1h16min 0.957 0.923

The results for analyzing the largest four families were
summarized in Table 1. Clustering quality of Exp-4 was
comparable (precision of 0.932 and recall of 0.915 at the
lowest) to Exp-3, and it significantly reduced the analysis
time. These optimizations make it feasible to apply our
algorithm to analyze a bigger scale of malware families while
providing a desirable trade-off option between speed and
accuracy.

4. EXPERIMENTS
In this section, we describe the data preparation procedure,

and report malware clustering results and key findings of
our experiments. All our experiments were conducted on a
Ubuntu 14.04 Server, which was equipped with two 2.4GHz
Intel Xeon E5-2695 v2 processors and 256GB memory.

4.1 Data Preparation
We obtained a large collection of potentially malicious

Android apps (ranging from 2010 to 2016) from various
sources, include Google Play, VirusShare and third party
security companies. During our analysis, we observed that
some labeled-malicious apps in our datasets were actually
benign while some labeled-benign Google Play apps were
malicious. In order to prepare “cleaner” datasets, we queried
the collected apps against VirusTotal, and used the scanning
results to filter out the potentially ambiguous apps. Malware
samples submitted to VirusTotal are scanned by more than
50 anti-virus products. We assumed the detection techniques
used by different anti-virus products were independent and
we can prepare the malware dataset according to multiple
anti-virus scanning results so that it is not biased by a



particular anti-virus scanner.
From VirusTotal scanning results, previous research [23]

showed that different number of malicious flags could be
an indicator of different malware qualities, e.g., a malware
sample detected by only one scanner was likely to be a false
positive of the particular product. Since it is desirable to
have reliable datasets to build analysis model and measure
the performance, we restricted our malicious dataset to the
malware samples that were detected by at least 25 different
anti-virus scanners for conservativeness.

4.1.1 Clearly Labeled Malware
We used VirusTotal reports to derive the malware family

labels. Specifically, we first tokenized VirusTotal scanning re-
sults and extracted English keywords, and then recorded the
total count of each keyword. We converted keywords to low-
ercase except the first letter to normalize several variations.
Generic keywords (e.g., Virus, Trojan, and Malicious) were
ignored because they were too generic to be used as rep-
resentative family names. Due to the inconsistent labeling
across different anti-virus products, we also measured the
edit distance between the keywords and aggregated the simi-
lar ones into one keyword. For example, Nickyspy, Nickspy,
Nicky, and Nickibot were all consolidated into Nickispy.
Note that the edit distance measurement serves as enhanced
normalization for identifying various malware family aliases.

Table 2: Malware samples with dominant keywords

App ID Keywords and counts

M1 Plankton (10) Startapp (4) Apperhand (4)
M2 Wapsx (15) Dowgin (5) Frupi (2)
M3 Youmi (12) Wooboo (4) Adrads (2)

To assign a family name for each sample, we selected the
dominant keywords from the scanning results. In particular,
we considered a keyword as a dominant keyword if it satisfied
the following two conditions: (a) the count of the keyword
was larger than a predefined threshold t (e.g., t=10), and (b)
the count of the most popular keyword was at least twice
larger than the counts of any other keywords. Table 2 shows
three examples of dominant keywords. We excluded samples
that were not clearly labeled with a dominant keyword since
the main objective was to prepare a reliable ground truth
dataset with the most consistent family names. We also
collected a certain amount of relatively recent malicious
Android malware samples, such as SlemBunk, Triada and
RuMMS. However, we observed that those recent apps usually
did not have enough consensus labels across different anti-
virus scanning results so that they were not included in the
labeled dataset.

In summary, we collected 19,738 labeled malware samples
from 68 different families, and the detailed breakup of the
malware samples is shown in Table 3.

4.1.2 Candidate Repackaging App Pair
We also collected 945,786 benign apps that were scanned

in VirusTotal and had no malicious flags as of April 18,
2016; and the benign apps were used to identify candidate
repackaging app pairs. We designed an alternative approach
to extract malicious payloads from the candidate repackaging
app pairs, which then were used to verify the malicious
payload extracted by the clustering analysis based approach.

Table 3: Clearly Labeled Malware Families

Name Size Name Size Name Size

Dowgin 3280 Fakeinst 3138 Adwo 2702
Plankton 1725 Wapsx 1668 Mecor 1604
Kuguo 1167 Youmi 790 Droidkungfu 561
Mseg 245 Boqx 214 Airpush 183

Smskey 166 Kmin 158 Minimob 145
Gumen 145 Basebridge 144 Gingermaster 122

Appquanta 93 Geinimi 86 Mobidash 83
Kyview 80 Pjapps 75 Bankun 70

Nandrobox 65 Clicker 58 Golddream 54
Androrat 49 Erop 48 Andup 48

Boxer 44 Ksapp 39 Yzhc 37
Mtk 35 Adflex 32 Fakeplayer 31
Adrd 30 Zitmo 29 Viser 26

Fakedoc 26 Stealer 25 Updtkiller 24
Vidro 23 Winge 19 Penetho 29

Mobiletx 19 Moavt 19 Tekwon 18
Jsmshider 18 Cova 17 Badao 17
Spambot 16 Fjcon 16 Faketimer 16
Bgserv 16 Mmarketpay 15 Koomer 15
Vmvol 13 Opfake 13 Nickispy 12
Uuserv 12 Svpeng 12 Steek 12

Spybubble 12 Fakeangry 12 Utchi 11
Ramnit 11 Lien 11

Given a repackaging app pair (an original benign app and
a repackaged malicious app), we applied the library code re-
moval technique to exclude the original benign app code from
malware and extract the malicious payload. The malicious
payload extracted in this step served as an alternative source
for malicious payload verification. To identify candidate
repackaging app pairs, we compared the labeled malicious
dataset against entire benign datasets, and identified the
candidate repackaging app pairs through the following pro-
cedure.

• We compared each malware fingerprint against every
benign fingerprint, and filtered out dissimilar app pairs
based on the number of set bits of both fingerprints by
using the optimization Opt-1 in Section 3.2. Specifically,
we ignored app pairs that had a size ratio larger than
2, as their similarity would be lower than 0.5, and thus
less likely to be the repackaged Android malware and
their corresponding repackaging origins.

• In order to prepare more confident repackaging app
pairs, we required the collected app pairs to satisfy
at least one of the following conditions: (a) the edit
distance between the package names of two apps was
less than 4; (b) the over similarity of the directory
names contained in two apps was larger than 0.5; (c)
the over similarity of the file names contained in two
apps was larger than 0.5; (d) the over similarity of the
top level class name set in two apps was larger than 0.5;
(e) the file size ratio of classes.dex of two apps was
within 2; or (f) the ratio of the number of functions in
two apps was within 2.

• Finally, we performed containment analysis to select
the candidate repackaging app pairs with the contain-
ment threshold of 0.9. The rationale behind using
containment analysis as a decision function was that re-
moving existing code sequences from a benign app was
less likely to happen than adding new code sequences,



as the existing code base might have code dependency
requirements.

Note that we deliberately tuned the parameters towards
selecting the app pairs that were highly likely to be the
repackaged malware and the repackaging origins. Within the
labeled malware dataset, we eventually found 516 malicious
samples, each of which had at least one candidate repackaging
origin.

4.2 Clustering Results

4.2.1 Alternative Malicious Payload Verification
In this work, we achieve malware sample clustering by

checking if multiple samples share similar version of malicious
payloads. The quality of the extracted malicious payload will
largely impact the sample clustering results. We design a new
way to precisely extract malicious payloads from candidate
repackaging app pairs to verify our malicious payload mining.

Specifically, we extracted the malicious payload from the
malware sample of a candidate repackaging app pair by using
the library code removal technique to exclude the original
benign app code from the repackaged malicious app.

We create a normal bit-vector fuzzy hashing fingerprint for
the malware sample by mapping the extracted n-gram fea-
tures into 1-bits, and map the n-gram features that extracted
from benign app into 0-bits for the benign app fingerprint
generation. By applying intersection analysis on the two fin-
gerprints, we automatically exclude the benign app mapped
1-bits from malicious app fingerprint, thus locate the cor-
responding malicious payload. For simplicity, we call the
“clustering analysis” based malicious payload extraction as
the main payload extraction approach, and call the new
method described in this section as an alternative payload
extraction approach.

For the 516 labeled malware samples which had candidate
repackaging origins, we found 34 of them were not been clus-
tered due to falling into payload clusters that had only one
entry. We compared the payload extraction results of the
main approach against the alternative approach for the rest
482 malware samples. Since the main approach extracts ma-
licious payloads through two rounds of intersection analysis
(e.g., sample intersection analysis, and candidate payload in-
tersection analysis), the extracted payloads are more precise
and contain little or no library code; while the alternative
approach extracts malicious payloads by removing popular
library code and original benign app code, and the extracted
payloads may contain certain less popular library code.

For these 482 malware samples, the experiment result
showed that on average 91.5% of the malicious payloads
extracted by the main approach were also extracted by the
alternative approach, which means both approaches almost
all get the same core malicious payload from each malware
sample, and the malicious payload extracted by the main
approach has higher quality and indeed contain the majority
of core malicious payload.

4.2.2 Clustering Results for Individual Families
As discussed earlier, we can derive malware family labels

from VirusTotal scanning results, but we can not directly get
the subversion information. In practice, malware samples
labeled with the same family name could contain completely
different versions of malicious payloads. For example, the
Cova malware family has two main versions of malicious

payloads and they use almost completely different code bases.
In order to obtain specific malware family labels and version
information, it is desirable to separate them into different
clusters.

In order to get the subversion information for each malware
family, we conducted malware sample clustering analysis
within each malware family. The overall sample clustering
results for each malware families is described in Table 4. As
shown in the table, we obtained 260 sample clusters in total
for the labeled malware samples from 68 families, each sample
cluster corresponded to one version of malicious payloads.
Out of 19,738 labeled malware samples, 634 (3.2%) samples
were skipped by the clustering algorithm. The malware
family that contained the largest number of sample clusters
was Fakeinst, for which we extracted 42 versions of malicious
payloads.

Table 4: Clustering Results for Individual Families

Family Clusters Skipped Family Clusters Skipped
Name Count Samples Name Count Samples

Dowgin 23 134 Fakeinst 42 105
Adwo 33 100 Plankton 6 20
Wapsx 11 49 Mecor 2 0
Kuguo 4 19 Youmi 18 75

Droidkungfu 7 24 Mseg 2 12
Boqx 3 2 Airpush 4 3

Smskey 3 1 Kmin 3 0
Minimob 2 1 Gumen 1 0

Basebridge 6 4 Gingermaster 8 3
Appquanta 1 0 Geinimi 1 1
Mobidash 2 2 Kyview 3 4

Pjapps 2 3 Bankun 3 3
Nandrobox 2 0 Clicker 2 2
Golddream 2 2 Androrat 1 3

Erop 1 2 Andup 5 1
Boxer 1 0 Ksapp 2 1
Yzhc 2 4 Mtk 3 3

Adflex 1 1 Fakeplayer 3 10
Adrd 2 2 Zitmo 2 0
Viser 2 2 Fakedoc 1 4

Stealer 1 0 Updtkiller 1 0
Vidro 1 0 Winge 2 2

Penetho 1 1 Mobiletx 1 2
Moavt 2 0 Tekwon 1 2

Jsmshider 1 1 Cova 2 0
Badao 1 0 Spambot 2 2
Fjcon 1 0 Faketimer 2 4
Bgserv 2 0 Mmarketpay 1 1
Koomer 1 0 Vmvol 1 0
Opfake 2 3 Nickispy 1 2
Uuserv 1 1 Svpeng 1 0
Steek 1 0 Spybubble 1 2

Fakeangry 1 3 Utchi 1 2
Ramnit 2 4 Lien 2 0

In practice, the clustering analysis procedure conducted
on top of individual malware families can be considered as a
training procedure for preparing the legitimate library list.
Note that such training is not the same as the conventional
training process often used in machine learning, in which an
analysis model is built from the training dataset and used
for future detection.

4.2.3 Clustering Results for Multiple Families
In order to evaluate the practical usage of clustering anal-

ysis procedure, we performed malware sample clustering



analysis across multiple malware families. We considered
the VirusTotal family labels together with the manually ver-
ified subversion information as ground truth datasets since
VirusTotal scanning results did not contain subversion infor-
mation. Since different versions of malicious payloads usually
contained few shared code segments (otherwise, they would
be grouped into the same payload cluster), we considered
the samples with different subversion as different families,
such as Droidkunfu-1, Droidkungfu-2, Droidkungfu-3, and
so on. As a result, we had 260 malware families that were
manually verified as shown in Table 4.

We prepared 10 experiment datasets for evaluation where
each dataset contained 30 families. For each dataset, we
randomly selected 30 families from the entire ground truth
dataset, then mixed the corresponding samples together. The
resulting datasets had different overall sizes as each individual
family had different number of samples. We used the classical
precision and recall [1, 13, 14, 15, 17, 18, 20, 22, 26, 27, 28]
measurements to evaluate the accuracy of clustering results.

Table 5: Clustering Results for Multiple Families

Datasets Samples Count Resulting Clusters Precision Recall

D1 1064 33 0.977 0.972
D2 1462 27 0.987 0.964
D3 1708 29 0.985 0.978
D4 1039 31 0.971 0.960
D5 2277 29 0.988 0.989
D6 1066 30 0.971 0.919
D7 1256 29 0.985 0.981
D8 1680 29 0.985 0.980
D9 2074 31 0.996 0.858
D10 1612 31 0.992 0.989

The detailed dataset sizes and sample clustering results
for multiple malware families are presented in Table 5. On
average, the sample clustering algorithm separated the input
malware samples into 29.9 clusters, which was extremely
close to the reference set (i.e., 30 families). For the 10 ex-
periment datasets, the clustering algorithm achieved average
precision of 0.984 and average recall of 0.959. As shown in the
table, the worst precision and recall for clustering multiple
malware families were 0.971 and 0.858, which suggests that
our approach generated very consistent and reliable outputs.

4.3 Key Findings
Significant library code ratio: Library code ratio in

Android apps is indeed significant. From our datasets, we
found that at least 31.5% of code in every malware was
library code, and more than 50% of code was library code
in 43% of malware samples. This highlights that existing
similarity analysis of Android malware becomes ineffective
without considering library code. We also note that more
and more malware families inject their malicious payloads
under popular library names, and even interpose them as sub-
components of existing libraries. By representing Android
apps and legitimate libraries as fuzzy hashing fingerprints,
we identify legitimate libraries and exclude them from an
app while including bogus libraries for further analysis.

Limited versions of malicious payload: Practical An-
droid malware contains limited version of malicious payload.
During our experiments, we acquire 260 versions of mali-
cious payloads from 68 VirusTotal labeled malware families
through the malicious payload extraction procedure. Among

68 malware families, 27 families have only one version of
malicious payload, and 5 families have more than 10 differ-
ent versions of malicious payload. For example, Dowgin is
the largest malware family and has 23 version of malicious
payload extracted. For the detailed payload version count
information, please refer to Table 4. The above results show
that in practice Android malware only contains limited ver-
sions of malicious payloads and malware authors often reuse
the same version of malicious payload to create new mali-
cious samples. Our Android malware app clustering solution
exploits such operational practices to group related malware
samples.

Malicious payload under popular namespaces: Mal-
ware authors indeed try to hide payload under popular names-
paces. We conducted manual analysis on the extracted ma-
licious payloads, and identified that significant amount of
Android malware families tried to hide their malicious pay-
load under popular namespaces, such as “com.google” and
“com.android”. Since these namespaces are the main class
names used by Android Open Source Project and Google
Mobile Services, such malicious payloads can easily get over-
looked during analysis. Besides the above popular names-
paces, attackers can also hide malicious payload under third-
party library names. For example, Gumen malware tried
to inject their malicious payload under com.umeng.adutils,
which looks like a genuine sub-class for the official Umeng
advertisement library. Our malicious payload extraction
method leads us to discover that there are about 29% of
malware families disguising their malicious payloads under
popular library names. The detailed information for such
library name usages are illustrated in Table 6 of Appendix.

5. RELATED WORK
Android malware research has boomed in recent years

thanks to the worldwide popularity of the Android platform.
In this section, we describe Android application security
research work that is most related to our work from two spe-
cific perspectives, and discuss the strengths and fundamental
limitations of existing research work and the distinctive con-
tributions of our work.

5.1 Android Application Similarity Analysis
It is well-known [32] that significant amount of existing An-

droid malware belongs to repackaged apps. To detect repack-
aged Android malware, similarity analysis based techniques
have been proposed. For example, Juxtapp [12] utilized
Dalvik bytecode level n-gram features and feature hashing
techniques [17] to represent an app, and focused on detecting
code reuse and repackaged malware through app similarity
analysis. DroidMoss [31] employed a fuzzy hashing tech-
nique to effectively localize and detect the changes by app-
repackaging behavior. Androguard [6] leveraged semantic
Normalized Compression Distance (NCD) measures to verify
the similarity percentage for existing third party apps. An-
droSimilar [9] provided a syntactic foot-printing mechanism
to find the regions of statistical similarity with known mal-
ware to detect unknown zero-day samples. ViewDroid [29]
utilized a feature view graph to capture users’ navigation
behavior across app views, and used a graph similarity al-
gorithm to detect a repackaged app. The combination of
n-gram features and feature hashing techniques was stud-
ied as the main building block for designing a reliable fuzzy
hashing algorithm and conducting efficient and accurate code



similarity analysis [20].
In this work, we employ a fuzzy hashing algorithm called

nextGen-hash while incorporating the techniques to analyze
Android applications at the disassembled bytecode level, and
extensively exploit the bit manipulation capability provided
by the bit-vector fuzzy hashing fingerprint representation
as the technical foundation for subsequent analysis. Even
though both Juxtapp [12] and our approach use n-gram fea-
tures of Dalvik bytecode and feature hashing techniques, the
main objectives are different so that the ways of using fin-
gerprints are also different. For example, we directly process
Dalvik bytecode sequences within each function and include
operand features, such as Java primitive types, for precise
similarity analysis (e.g., avoiding overestimating similarity)
whereas Juxtapp processes Dalvik bytecode at the basic block
level and discard most operands.

Similarity analysis is essential for clustering. Existing An-
droid application similarity analysis techniques were mainly
designed to detect repackaged apps [6, 12, 29, 31], and they
cannot be directly applied to app clustering due to the chal-
lenges discussed earlier. We build our solution based on an ef-
ficient fuzzy hashing algorithm, and empirically demonstrate
that it provides crucial capabilities for Android malware
analysis, such as removing legitimate library code, extracting
malicious payloads from Android malware, and performing
Android malware clustering.

5.2 Android Malicious Payload Analysis
Malicious payload identification and extraction is essential

for Android malware analysis. Zhou and Jiang [32] manually
analyzed malicious payloads of Android malware and summa-
rized the findings in the Android Malware Genome project.
DroidAnalytics [30] presented a multi-level signature based
analytics system to examine and associate repackaged An-
droid malware. MassVet [4] analyzed graph similarity at the
function level and extracted the shared non-legitimate func-
tions as malicious payloads through commonality analysis
and differential analysis.

In this work, we use a fuzzy hashing fingerprint based
approach to extract the core malicious payload from An-
droid malware, and conduct application clustering analysis
by checking if the analyzed samples share the same version
of malicious payloads. MassVet [4] is close to our work in
that both extract malicious payloads from Android mal-
ware. However, similar to existing Android malware analysis
work [3, 4, 5, 8, 11], MassVet simply used library name based
whitelists to ignore popular library code, which can result
in the failure of malicious payload extraction, and lead to
false negatives in malware detection if malicious payloads
are injected into popular library namespaces. In addition,
our approach operates at the instruction level while MassVet
operates at the function level, and our finer-grained granu-
larity features allow us to precisely identify one version of
malicious payload from each Android malware. Precise and
robust malicious payload extraction in our approach is a key
to provide a more complete view of the malicious payloads.

6. CONCLUSION
In this paper, we provide a practical solution for con-

ducting Android malware clustering analysis based on an
efficient fuzzy hashing algorithm. As shown in the paper,
our approach can safely remove legitimate library code and
automatically extract malicious payload. Particularly, our

solution can be used to distinguish an old version library
and a bogus library that share the same library name; it
can precisely locate the differential part and extract the
corresponding malicious code segments. Compared with ex-
isting malicious payload extraction system, our approach can
extract malicious payload even if they are injected under
popular library namespaces or under existing benign func-
tions, and it provides a more complete picture of the whole
malicious payload. Unlike traditional clustering techniques
which directly examine the overall similarity, we achieve
Android malware clustering by checking whether malware
samples share the same version of malicious payload, and
our experimental results demonstrated that the clustering
algorithm can generate consistent and reliable outputs.
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7. APPENDIX



Table 6: Malicious payload under popular libraries

Family Popular Class Names Used

Nickispy
com.google.android.info.SmsInfo

com.google.android.service.UploadService

Uuserv
com.uuservice.status.SysCaller.callSilentInstall
com.uuservice.status.SilenceTool.MyThread.run

Fjcon
com.android.XWLauncher.CustomShirtcutActivity
com.android.XWLauncher.InstallShortcutReceiver

Yzhc
com.android.Base.Tools.replace name

com.android.JawbreakerSuper.Deamon

Gumen
com.umeng.adutils.AdsConnect

com.umeng.adutils.SplashActivity

Basebridge
com.android.sf.dna.Collection

com.android.battery.a.pa

Spambot
com.android.providers.message.SMSObserver
com.android.providers.message.Utils.sendSms

Moavt
com.android.MJSrceen.Activity.BigImageActivity

com.android.service.MouaService.InitSms

Zitmo
com.android.security.SecurityService.onStart
com.android.smon.SecurityReceiver.sendSMS

Mseg
com.google.vending.CmdReceiver

android.ad.appoffer.Copy 2 of DownloadManager

Droidkungfu
com.google.ssearch.SearchService
com.google.update.UpdateService

Dowgin
com.android.qiushui.app.dmc

com.android.game.xiaoqiang.jokes.Data9

Fakeinst
com.googleapi.cover.Actor

com.android.shine.MainActivity.proglayss Click

Ksapp
com.google.ads.analytics.Googleplay

com.google.ads.analytics.ZipDecryptInputStream

Bankun
com.google.game.store.bean.MyConfig.getMsg

com.google.dubest.eight.isAvilible

Pjapps
com.android.MainService.SMSReceiver

com.android.main.TANCActivity

Adwo
com.android.mmreader1030

com.google.ads.AdRequest.isTestDevice

Svpeng
com.adobe.flashplayer .FV.doInBackground

com.adobe.flashplayer .FA.startService

Opfake
com.android.appupdate.UpdateService

com.android.system.SurpriseService

Badao
com.google.android.gmses.MyApp

com.android.secphone.FileUtil.clearTxt


