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Abstract—Cyber vulnerabilities are security deficiencies in computer and network systems of organizations, which can be exploited by

an adversary to cause significant damage. The technology and security personnel resources currently available in organizations to

mitigate the vulnerabilities are highly inadequate. As a result, systems routinely remain unpatched, thus making them vulnerable to

security breaches from the adversaries. The potential consequences of an exploited vulnerability depend upon the context as well as

the severity of the vulnerability, which may differ among networks and organizations. Furthermore, security personnel tend to have

varying levels of expertise and technical proficiencies associated with different computer and network devices. There exists a critical

need to develop a resource-constrained approach for effectively identifying and mitigating important context-sensitive cyber

vulnerabilities. In this article, we develop an advanced analytics and optimization framework to address this need and compare our

approach with rule-based methods employed in real-world cybersecurity operations centers, as well as a vulnerability prioritization

method from recent literature. First, we propose a machine learning-based vulnerability priority scoring system (VPSS) to calculate the

priority scores for each of the vulnerabilities found in an organization’s network and quantify organizational context-based vulnerability

exposure. Next, we propose a decision-support system, which consists of a two-step sequential optimization approach. The first model

selects the high priority vulnerability instances from the dense report subject to resource constraints, and the second model then

optimally allocates them to the security personnel with matching skill types for mitigation. Experiment results conducted using a real-

world vulnerability data set show that our approach 1) outperforms both the rule-based methods and the vulnerability prioritization

method from literature in prioritizing context-sensitive vulnerabilities, which are found across highly susceptible organizationally

relevant host machines, and 2) maximizes the pairs of vulnerability instance type and the respective security analyst skill type for

optimal mitigation.

Index Terms—Context-sensitive vulnerability triage and mitigation, cyber vulnerability management, machine learning, mixed integer

programming, sequential optimization, vulnerability priority scoring system
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1 INTRODUCTION

MALICIOUS actors are actively looking to exploit any
weaknesses found in the computational logic of soft-

ware and hardware components in an organization’s net-
work. Upon identification, these weaknesses, also referred
to as vulnerabilities, are reported in the National Vulnera-
bility Database (NVD), which is sponsored by the Depart-
ment of Homeland Security’s National Cyber Security
Division. The number of new vulnerabilities reported in the
NVD has increased annually in the last three years, and
these vulnerabilities are now more than two times what
they were in 2016 [1]. Concurrently, the number of new vul-
nerabilities has significantly increased in organizations’ net-
works. However, the technology and security personnel
resources have lagged behind in adequately matching the
effort needed to mitigate them, which has resulted in an
asymmetric advantage for these malicious actors.

Fig. 1 shows the typical vulnerability management pro-
cess employed by many organizations. In this process, the

software and hardware components of an organization’s
network are scanned periodically to find vulnerabilities that
may have been reported in the NVD. There are many types
of vulnerability scanners available in the market. Some of
the popular vendors include Tenable, Qualys, and IBM. The
vulnerability report contains valuable information about
the identified instances of vulnerability, such as the com-
mon vulnerability exposure (CVE) code, host name,
description, and the common vulnerability scoring system
(CVSS) value indicating the severity rating, among others.
There are many available actions to mitigate each vulnera-
bility found in this dense report. These actions include
upgrading of the software, disabling/disconnecting the ser-
vice, applying a vendor-supplied patch, and adding an IP
filter, among others. Security analysts have varying skill
sets associated with different computer and network devi-
ces. For instance, some analysts are more proficient in secur-
ing web server infrastructure compared to mobile user
environment. Some analysts are more proficient with Micro-
soft systems compared to Unix-based systems. Based on
their skill sets and availability, security personnel take
appropriate actions to mitigate the threats posed by the vul-
nerabilities. The two commonly employed vulnerability tri-
age and mitigation strategies are 1) a CVSS value-based
plan and 2) an analysts’ key performance indicator (KPI)-
driven plan. In the former strategy, the vulnerability
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instances selected for mitigation are those that maximize the
cumulative CVSS value by taking into account their severity
scores. In the latter strategy, security analysts maximize the
remediation of vulnerabilities by selecting the ones that are
easier (and that take less time) to mitigate.

The above myopic approaches yield sub-optimal out-
comes because of the following three major problems. 1)
Vulnerability instances with a lower severity continue to
persist in the network for a long time and may result in seri-
ous consequences; for instance, the infamous WannaCry
cyberattack on machines with an unpatched Microsoft Win-
dows operating system cost the world economy billions of
dollars. 2) A CVSS base score does not reflect the true sever-
ity of a vulnerability, as it does not consider organization-
specific context-based factors such as the relevance of the
segment (location) of the network where the vulnerability is
reported, the existing level of protection in that respective
segment of the network, and the presence of high-value
assets in that segment. The potential consequences stem-
ming from an exploited vulnerability with a given CVSS
value may differ from one network to another and also
from one organization to another. 3) The sub-optimal
approach to the allocation of security personnel without
considering their expertise and skills for vulnerability miti-
gation may also directly impact the security posture of an
organization.

In this paper, we address the aforementioned challenges
and the critical need to improve the security posture of an
organization by optimizing the vulnerability triage and mit-
igation process. The contributions of this research are as fol-
lows. First, we developed a novel machine learning-based
vulnerability priority scoring system (VPSS), which takes
into account organizational context (through qualitative fac-
tors) along with the assigned CVSS value from the NVD for
each vulnerability found in the network. We incorporate the
domain expertise of humans for feature engineering to
develop the machine learning models for the VPSS. In this
research study, we worked with security analysts at a cyber-
security operations center (CSOC) to assign quantitative
values to the qualitative factors identified for the calculation
of the VPSS scores for the vulnerabilities. We used a subset
of the vulnerability instances found in a real-world CSOC
and their respective validated VPSS scores from the security
personnel as a training data set to estimate the VPSS scores
of all the vulnerability instances found in the scan reports.
The problem of selecting important context-sensitive vul-
nerabilities from this dense report and allocating them to
the limited number of skilled security personnel is not triv-
ial. Hence, second, we developed a decision-support system
consisting of a two-step sequential optimization approach
that optimizes the security posture of an organization by

first selecting the high priority vulnerabilities for mitigation
based on their VPSS scores in a resource-constrained envi-
ronment, and then allocating them to the available security
personnel with matching skill sets. This decision-support
system takes the dense vulnerability scan report with the
VPSS-generated vulnerability scores, along with the secu-
rity personnel availability and skill sets, as inputs. The out-
put of the system is the mitigation action plan for the
organization, which consists of the selected vulnerabilities
and their respective allocations to the security personnel for
mitigation. Our proposed framework is scalable and pro-
vides organization-specific customizations that can assist
any organization with prioritizing and mitigating context-
sensitive vulnerabilities. Third, we provided insights
obtained using our proposed approach by comparing our
results with the other commonly employed rule-based
methods and a vulnerability prioritization method [2] from
recent literature. Our experiment results involving real-
world vulnerability scan data show that our approach out-
performs these methods in prioritizing context-sensitive
vulnerabilities with respect to high-value assets (such as
important sub-domains), relevance (web and database serv-
ers), and highly susceptible host machines (with a lower
level of protection in the network). In addition, our pro-
posed approach is able to maximize the pairing of vulnera-
bility instance type and the respective security analyst skill
type for mitigation, thereby resulting in an efficient vulnera-
bility management for the organization.

The paper is organized as follows. Section 2 presents the
related literature. Section 3 presents the proposed frame-
work, which consists of the machine learning-based vulner-
ability priority scoring system and the two-step sequential
optimization models. Also, model parameters, mathemati-
cal formulation for the optimization models, computational
complexity, algorithm, and baseline rule-based methods are
discussed here. Section 4 presents the numerical experi-
ments performed using real-world vulnerability scan data.
Section 5 presents the experiment results and comparisons
with other methods. Lastly, Section 6 discusses the insights
obtained from this research study and provides conclusions.

2 RELATED LITERATURE

A 2018 report by the Council of Economic Advisors, an
agency within the Executive Office of the President, esti-
mated that malicious cyber activity cost the U.S. economy
between $57 billion and $109 billion in 2016 [3]. This num-
ber is expected to increase until organizations deploy ade-
quate solutions to protect themselves from such malicious
cyber threats. Due to this significant increase in the number
of vulnerabilities found in a network and the lack of avail-
able resources, organizations must triage vulnerabilities for
mitigation. The common vulnerability scoring system
(CVSS) is a widely used mechanism to triage vulnerabilities.
Several changes have been made in the architecture of the
CVSS score over the years. The most recent CVSS version is
3.1, which consists of eight base metrics, three temporal
metrics, and four environmental metrics [4]. The base met-
rics are constant over time and represent the inherent char-
acteristics of vulnerabilities. The base metrics can be further
decomposed into two different groups: exploitability

Fig. 1. Typical vulnerability management process.
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metrics and impact metrics. The exploitability metrics rep-
resent the ease and technical means required to exploit the
vulnerability, whereas the impact metrics represent the
potential impact of a successful exploitation. Temporal met-
rics reflect the characteristic of vulnerability that may
change over time and the environmental metrics represent
the characteristic of a vulnerability that are environment
specific [4]. Mell et al. [5] comprehensively analyzed the
CVSS metrics when version 2.0 was the state-of-the-art.
Anecdotal evidence indicates that most organizations have
since used CVSS base scores to prioritize the vulnerabilities
for mitigation. The environmental and temporal metrics of
the CVSS scores are omitted as NVD employs CVSS base
score metric to be the severity indicator of all recorded vul-
nerabilities [6]. Although the CVSS score consists of various
environmental metrics, their computation is complicated
and not well proven [7]. The omitted environmental and
temporal metrics account for an organization’s context. Due
to the missing contextual information, the NVD scoring is
of limited use [8]. Researchers and practitioners argue that
this score alone is not a good indicator of the compromise
time of a device/network, or the potential consequences
that may arise from exploitation of a vulnerability [2], [6],
[9], [10]. Some research studies have tried to bridge this
gap. For instance, Cavusoglu et al. [11] presented a game
theoretic approach that facilitates better understanding of
vendor-CSOC relationship by incorporating cost-benefit
analysis, and Allodi and Massacci [12] incorporated exter-
nal information such as black-market exploit data to obtain
a more statistically significant indication of the true severity
of a vulnerability. There remains, however, an imbalance
between the total available time and the total time required
to mitigate all vulnerabilities found in an organization’s
network.

Farris et al. [2] proposed two performance metrics, namely:
total vulnerability exposure and time to vulnerability remedi-
ation, and then optimized the selection of vulnerabilities for
mitigation by developing amulti-objectivemixed integer pro-
gramming optimization model. Shah et al. [13] investigated
two approaches: individual attribute value optimization and
multi-attribute value optimization for vulnerability selection.
The results indicated that using a multi-attribute value opti-
mization is superior to optimizing the selection of vulnerabil-
ities with respect to a single attribute. Similar multi-objective
optimization models have been developed for other fields,
which include implementation of intersection signal control
with the goal of minimizing emission and travel delay [14]
and evaluation of the transit signal priority using an inte-
grated traffic signal control consisting of a genetic algorithm
and artificial neural networks [15], among others.

Optimization approaches are used for the allocation of
human resources to improve products and services in vari-
ous fields. For example, a goal programming model is
developed for strategic planning and allocation for limited
human resources in a healthcare organization [16]. Simi-
larly, an optimization system is developed for selecting
profitable projects from a set of possible alternatives while
also performing the optimal allocation of human resources
for those selected projects [17]. Based on the varying degree
of difficulties, a multi-objective, multi-factorial optimization
model is developed to decompose and dynamically allocate

resources [18]. A methodology based on dynamic program-
ming is presented to assign human resources to software
development projects in [19]. An inverse optimization
model for human resource allocation is developed by taking
into consideration the competency disadvantages of indi-
viduals [20]. A conceptual framework for software resource
allocation and selection is developed to maximize a
company’s profit based on the levels of software skills [21].
A regression test prioritization technique is developed to
cover maximum faults in minimum time through an ant col-
ony optimization [22].

Our research differs from the aforementioned studies
by proposing a unified framework that 1) prioritizes vul-
nerabilities for mitigation by developing a novel vulnera-
bility priority scoring system that takes into account both
the organizational context and the CVSS-based severity
ratings, and 2) optimizes the selection and allocation of
the vulnerability instances to security personnel by
matching their skill sets with the types of vulnerabilities.
To the best of our knowledge, this research study is the
first one to consider the attributes of security personnel
in making vulnerability allocation decisions for optimiz-
ing the security posture of an organization. This problem
is non-trivial due to the complexity of the computer net-
works, the vast amount of vulnerabilities that exist on
the host machines/devices, and the limited number of
resources available for vulnerability management. Effi-
cient vulnerability management can significantly stream-
line security operations and improve the overall security
posture of an organization.

3 ADVANCED ANALYTICS AND OPTIMIZATION

FRAMEWORK FOR CONTEXT-SENSITIVE

VULNERABILITY MANAGEMENT

There is a critical need to improve the security posture of an
organization by optimizing the vulnerability triage and miti-
gation process, which can be achieved by adding organiza-
tion-specific information to prioritize the mitigation of
context-sensitive vulnerability instances and assigning them
to appropriate security analysts with matching skill sets.
Fig. 2 shows a schematic of the proposed framework for vul-
nerability management. The software and hardware compo-
nents of an organization’s network are first scanned to find
the vulnerabilities reported in the NVD. The vulnerability
report is then provided as an input to the machine learning-
based vulnerability priority scoring system (VPSS) that
assigns scores to the vulnerability instances. The updated
vulnerability report with the VPSS scores is then provided as
an input to the decision-support system, which selects the
vulnerability instances for mitigation and allocates them to
the appropriate security personnel. The proposed frame-
work comprises the following key components: 1) a novel
machine learning-based VPSS, which takes into account the
organization-specific context in which vulnerabilities are
reported, among other factors, and 2) a decision-support sys-
tem with a two-step sequential optimization approach that
take into account the large vulnerability scan data, their
VPSS scores, historical vulnerability mitigation data, and the
security personnel information (availability and skill sets) to
obtain an optimal mitigation plan. First, we describe each of
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the aforementioned components, followed by the methods
used for comparison.

3.1 Vulnerability Priority Scoring System (VPSS)

We present a novel vulnerability priority scoring system
(VPSS) to calculate the priority scores for each of the vulner-
abilities found in an organization’s network. The VPSS takes
into account organization-specific context-based informa-
tion to determine the vulnerability priority scores. The fac-
tors considered in the VPSS are as follows: a) the relevance
of the segment (location) of the network where the vulnera-
bility is reported, b) the level of protection provided in the
respective segment, c) the presence of high-value assets in
that segment, and d) the CVSS value of the vulnerability.
An affinity diagram of the factors is shown in Fig. 3. By
using a quantitative value function hierarchy process [23], a
preference in the form of a weight, wi, is assigned to each of
these factors (indexed by i). These weights are obtained
from the stakeholders (security team) at the organization to
initialize the VPSS model. These initial weights can be later
adjusted based on the security personnel feedback received
during triage and mitigation.

A list of responses is created for each of these factors,
based on our conversations with the security experts. As
shown in Table 1, there are at least three categories of
responses available for the first three factors (high, medium,
and low). Based on the organizational needs, this list can be
expanded to add more qualitative responses (such as criti-
cal, high, medium, and low). Through an elicitation process
(with the help of surveys and interviews), the responses to
each of these factors are obtained from the stakeholders,
which are then transformed into numerical values. To keep
the scale of each of the factors in the same range, the numer-
ical values are normalized between 0 and 1. However, to
have each factor’s contribution to the calculation of the

priority score of a vulnerability instance, the lowest trans-
formed numerical value is clipped at 0.1. The categorical
responses for each factor are assigned numerical values as
follows. The categorical response with the highest priority
is assigned a value of 1 and that of the lowest priority is
assigned a value of 0.1. The responses that are in between
the highest and the lowest priorities are assigned values
that are uniformly spaced between them. A similar
approach to assigning numerical values to qualitative fac-
tors is used in [24] to compute the risk associated with an
intrusion detection system alert. For instance, a high rating
for the relevance (say, factor i ¼ 1) of a vulnerability
instance j will be given a value of ui¼1;j ¼ 1, whereas a low
(medium) rating will assign ui;j to 0.1 (0.5). Similarly, the
values of the CVSS score factor are normalized by taking
into consideration the largest value that the factor can take
(10 for CVSS score) with the minimum value of 0.1. The pur-
pose of such a scheme of assigning numerical values is to
maintain hierarchy among the categorical responses for
each factor and obtain a priority score using an additive
value function. Finally, each vulnerability instance, j, is
assigned a VPSS score, Vj ¼

P
iðwi � ui;jÞ. We define the vul-

nerability exposure score of an organization as C ¼ P
j Vj,

for all j unmitigated vulnerabilities. Note that this model
can be tailored to the specific cybersecurity operation
requirements by adding more factors.

The vulnerability scan reports tend to be very dense for
large organizations. Hence, to make this scoring mechanism
scalable and implementable, we propose the use of an
advanced analytics approach by using a supervised
machine learning model to estimate the VPSS scores. Fig. 4
shows a schematic of the VPSS scoring process. This is the
process followed to train the machine learning model. It is
to be noted that this process is repeated on a periodic basis
to capture changes in the network or new types of vulner-
abilities and also to adjust the priorities (factor weights) of
the organization. As explained earlier in this section, first,

Fig. 3. Factors in the vulnerability priority scoring system (VPSS).

TABLE 1
Responses for the Factors

Factor Response

Relevance High, Medium, or Low
Level of Protection High, Medium, or Low
Level of Asset Criticality Crtitical, High, Medium, or Low
CVSS Score Numerical

Fig. 2. A schematic of the proposed framework for context-sensitive vulnerability triage and mitigation.
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the security team in an organization assists in the priority
scoring of the vulnerability instances by identifying the
preferences (weights) for the factors and assigning numeri-
cal values to the qualitative responses, with their organiza-
tional knowledge and expertise. Next, this subset of
vulnerabilities is used as a training data set to build and
train a machine learning model. The VPSS scores in this
training data set are considered to be the ground truth
response values and the mean squared error (MSE) is used
as a performance metric to train various types of models
(such as linear, tree-based, and nonlinear). This vulnerabil-
ity data set with all the attribute information is in a natural
language format. Hence, natural language processing-based
feature extraction techniques are utilized to obtain the
important features and convert them into numerical values.
These features are then passed on to the machine learning
model with the respective VPSS scores as the response val-
ues for the vulnerability instances. The model with the low-
est MSE value obtained using the training samples is then
chosen as the machine learning model to be used in the pro-
posed framework (as shown in Fig. 2). Next, we present the
decision-support system that selects context-sensitive vul-
nerabilities and allocates them to the appropriate security
personnel for mitigation. The output of the allocation model
is the allocation of the selected vulnerability instances from
the selection model to the security personnel for mitigation.

3.2 Decision-Support System

The decision-support system consists of two optimization
models, which are executed in a sequential manner: 1) the
selection model and 2) the allocation model. The objective
of the selection model is to select vulnerability instances for
mitigation that minimizes the vulnerability exposure score
subject to the total time available for mitigation in a given
time-period. The objective of the allocation model is to allo-
cate the selected vulnerability instances obtained from the
selection model to the security personnel for mitigation by
maximizing the matching pairs of the type of vulnerability
instance and the skill type of the analyst. However, it is to
be noted that having all skill types of security personnel in
all time-periods is not attainable in real-world CSOCs due
to staffing and scheduling issues. In a real-world scenario, a
sub-optimal matching of the vulnerability type and the ana-
lyst skill type will impact the time taken to mitigate the vul-
nerability instance due to the lack of familiarity and
expertise of the security personnel. In the cases where all
matching pairs are not possible, additional time will be
required (i.e., T + d) to mitigate the selected vulnerabilities.

It is to be noted that the objective of this research study is to
minimize the context-sensitive vulnerability exposure of an
organization, which cannot be achieved by combining the
constraints from the aforementioned models into one model
as that could restrict the selection of certain high priority
vulnerability instances where matching analyst skill types
are unavailable. Hence, by decomposing the solution
approach into two separate but sequential models, we make
the decision-support system applicable in a real-world secu-
rity team environment, where all types of skill levels may
not be attainable for all time-periods. Next, we present the
mathematical formulation for the two optimization models.
The notations used in the mathematical formulations are
defined in Table 2.

3.2.1 Mathematical Formulation for Selection Model

Below we present the input parameters, decision variables,
objective function, constraints, and the outputs of the selec-
tion model.

Input parameters:

� The VPSS scores for all vulnerability instances, Vj8j.
� Expected time taken to mitigate a vulnerability

instance j, Sj.
� Total number of vulnerability instances in the scan

report, J .
� Total personnel-hours available for a given time-

period, T .
Decision variables:

� zj ¼ 1 if vulnerability instance j is selected, and 0
otherwise.

Objective function: The objective of the selection model is
to select vulnerability instances for mitigation that mini-
mizes the vulnerability exposure score (i.e., select vulnera-
bility instances for mitigation that maximizes the
cumulative VPSS score) subject to the total time available
for mitigation in a given time-period.

y ¼ Max
XJ

j¼1

Vj � zj (1)

Constraint: The constraint for the selection model is as
follows:

� The total time taken to mitigate the selected vulnera-
bility instances must not be higher than the total per-
sonnel-hours available for the given time-period,
which is expressed as:

Fig. 4. A schematic of machine learning-based VPSS scoring process.
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XJ

j¼1

Sj � zj � T (2)

Output: The output of the selection model is the set of
vulnerability instances selected for mitigation. Next, we
present the formulation for the allocation model.

3.2.2 Mathematical Formulation for Allocation Model

The allocation model assigns the selected vulnerabilities to
the security personnel for mitigation by taking into account
the vulnerability type and the skill type of the security ana-
lysts. To account for real-world conditions in a resource-con-
strained CSOC environment, where enough numbers of the
required analyst skill types are not available during each iter-
ation (say, on a weekly-basis), in this formulation, we con-
sider an additional time (x%) that would be required by an
analyst to mitigate a vulnerability instance in the sub-opti-
mal pairs. This is an algorithmic technique, in which a pen-
alty in the form of an additional time is imposed on sub-
optimal pairings of the vulnerability instances and security
personnel to obtain maximum number of matching pairs.
Furthermore, we add the available personnel hours of all the
analysts with the same skill type and use this information as
an input for the vulnerability allocation decision-making.
We present a novel mathematical formulation for this alloca-
tion model by posing the problem as a minimization of the
maximum overtime that is created for any analyst skill type.
A unique advantage of this objective function is that this
model will balance the overtime, as uniformly as possible,
among all the skill types of the analysts. Below we present
the input parameters, decision variables, objective function,
constraints, and the outputs of the allocationmodel.

Input parameters:

� Total number of hours available for analyst skill type
k, Rk.

� Set of vulnerability instances selected by the selec-
tion model, L, where jLj ¼ PJ

j¼1 zj
� Expected time taken to mitigate the vulnerability

instance j by security personnel with skill type k,

Hj;k. It is to be noted thatHj;k ¼ Sj, where the type of
vulnerability instance matches the skill type of the
analyst, andHj;k ¼ Sj þ x%, otherwise.

Decision variables:

� aj;k ¼ 1 if vulnerability instance j is allocated to ana-
lyst skill type k, and 0 otherwise.

� Amount of overtime (in hours) created for analyst
skill type k, dk.

� Maximum overtime (in hours),m
Objective function: The objective of the allocation model is

to maximize the matching pairs of the type of vulnerability
instance and the skill type of the analyst by minimizing the
maximum overtime that is created for any analyst skill type.

q ¼ Minm (3)

Constraints: The constraints for the allocation model are
as follows.

� The total time requirement for analyst skill type k to
mitigate the allocated vulnerability instances is
expressed as

XjLj

j¼1

Hj;k � aj;k � Rk þ dk8k (4)

� Ensuring allocation of all the selected vulnerability
instances to security personnel is given by

X

k

aj;k ¼ 18j 2 L (5)

� The maximum overtime among the analyst skill
types is calculated by:

dk � m8k (6)

Output: The output of the allocation model is the alloca-
tion of the selected vulnerability instances from the selection
model to the security personnel for mitigation. Next, we
present the algorithm for the decision-support system.

TABLE 2
Definitions of Notations

Notation Definition

Indices:
j Vulnerability instance index.
k Analyst skill type index.
Inputs:
J Total number of vulnerability instances in the scan report.
K Total number of analyst skill types.
T Total personnel-hours available in a given time-period.
Rk Total number of hours available for analyst skill type k.
Sj Expected mitigation time for j.
Hj;k Expected mitigation time for j by k (when types differ).
Vj VPSS score for vulnerability instance j.
Variables:
zj (Binary) Selection of vulnerability instance j.
aj;k(Binary) Allocation of vulnerability instance j to skill type k.
dk Amount of overtime (in hours) for analyst skill type k.
m Maximum overtime (in hours).
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3.2.3 Algorithm and Computational Complexity

Algorithm 1 provides the implementable steps for the
sequential optimization models in the decision-support
system.

Algorithm 1: Sequential Optimization Algorithm for
Vulnerability Management.

Input: VPSS scores for all vulnerability instances, Vj8j;
expected time taken to mitigate a vulnerability
instance j, Sj; additional time for mitigation for sub-
optimal pairs, x%; expected time taken to mitigate
the vulnerability instance j by security personnel
with skill type k, Hj;k (Hj;k ¼ Sj þ x%); total number
of vulnerability instances in the scan report, J ; total
personnel-hours available for a given time-period, T ;
total number of hours available for analyst skill type
k, Rk.

Output: Selected vulnerabilities for mitigation and their allo-
cation to security personnel, aj;k8j; k.

/* Initiate a solution search using an integer programming
solver */ repeat
for a set of zj ¼ 1, check for feasibility: doPJ

j¼1 Sj � zj � T /* Available time constraint */
end
if Feasible then
y ¼ Max

PJ
j¼1 Vj � zj /* Max cumulative VPSS score */

end
until Stopping criteria /* Optimal value for y is found */
/* Initiate a solution search using an integer programming

solver */ repeat
for a set of aj;k ¼ 1, check for feasibility: doPjLj

j¼1 Hj;k � aj;k � Rk þ dk8k /* Time reqd./skill type */P
k aj;k ¼ 18j 2 L /* All instances are allocated */ dk �

m8k /* Maximum overtime */
end
if Feasible then

q ¼ Minm /* Min max overtime (max matching pairs) */
end

until Stopping criteria /* Optimal value for q is found */
return aj;k8j; k.

The research problem of vulnerability instance selection
and allocation to security personnel for mitigation is formu-
lated as a sequential mixed integer programming problem.
Integer programming problems belong to the NP complex-
ity class [25] [26]. The complexity of the research problem is
2J�A, where J is the total number of vulnerability instances
in the scan report and A is the total number of security ana-
lysts in the organization. To reduce the complexity of the
research problem we consider the allocation of vulnerability
instances to the different skill types of analysts that are
available in an organization. K < A represents the total
number of analyst skill types.The complexity is further
reduced by decomposing the problem into two parts and
then solving them separately. The complexity of the selec-
tion model is 2J and the allocation model is 2jLj�K , where L
is the set of vulnerability instances selected for mitigation
by the selection model and jLj < < J . The computational
time for the instances of the problem solved using the pro-
posed two-step optimization approach on the real-world
vulnerability scan data was under 1 minute on a 32GB RAM

8-core processor machine using Gurobi solver. We compare
the performance of our approach against other methods,
which are described next.

3.3 Other Methods for Performance Comparison

Our proposed framework is compared against the rule-
based methods that are currently employed by the CSOCs,
namely, the CVSS value-based and the key performance
indicator (KPI)-driven methods, and a recently proposed
vulnerability prioritization method, VULCON, from the
literature.

The CVSS value-based method takes into account the
CVSS values (base scores) of the vulnerability instances and
selects the ones for mitigation that maximize the cumulative
CVSS value in a resource-constrained environment. The
objective of this method is to select vulnerability instances
for mitigation that maximize the cumulative CVSS value in
the given time-period. The objective function is expressed as

Max
XJ

j¼1

Dj � zj; (7)

where Dj8j represents the CVSS values for all vulnerability
instances in the scan report. The resource constraint in this
method is the same as in Equation (2).

The KPI-driven method takes into account the expected
mitigation time of the vulnerability instances in order to
maximize the number of vulnerability instances selected for
mitigation. The objective of this method is to maximize the
total number of vulnerability instances selected for mitiga-
tion in the given time-period. The objective function is
expressed as

Max
XJ

j¼1

zj (8)

The resource constraint in this method is the same as in
Equation (2).

The recently proposed VULCON strategy from literature
prioritizes the selection of vulnerabilities with respect to the
CVSS severity score, persistence, and the chronological age
of the vulnerabilities found in the network. This strategy
also takes into account mission criticality when triaging the
vulnerabilities for selection. The algorithm for this strategy
is given in [2].

The output obtained from the above methods is the set of
vulnerability instances selected for mitigation. In the next
two sections, we describe the numerical experiments that
are conducted and compare the results obtained by using
our proposed approach with those of the aforementioned
methods.

4 NUMERICAL EXPERIMENTS

We worked very closely with a CSOC and conducted our
experiments using real-world vulnerability scan data. The
use of real-world data and an active connection with the
CSOC adds a degree of pragmatism to this research at a
time when computer security research is disproportionately
based on synthetically generated data [27]. The real-world
data sets contained detailed information about the vulnera-
bility instances and the respective host machines found in
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the organization’s network. This information along with the
organizational VPSS factor preferences and the qualitative
(categorical) responses for each of them were obtained from
the security personnel. These qualitative responses were
then assigned numerical values based on certain rules.
Finally, the VPSS scores were calculated for the vulnerabil-
ity instances with the aforementioned information. These
scores were then used as the ground truth response values
for training the ML model (as shown in Fig. 4). The skill
type and expertise of security analysts is given as an input
by the CSOC to the decision-support system (in particular,
to the allocation model). This information can also be
obtained from the historical vulnerability mitigation data
and adjusted/changed by the CSOC manager, where
required. Based on the various analyst skill types and exper-
tise, we categorized the types of vulnerabilities in the data
sets, and used this information to match the analyst skill
types to the vulnerability instances. From our conversations
with the CSOCs, we learned that it is not a common practice
to log the exact time taken to mitigate a vulnerability
instance, however, it could be estimated. Hence, keywords
from the solution attribute field of the vulnerability instan-
ces found in the data sets were assigned an approximate
mitigation time (a similar approach is used in [2]). Next, we
provide a detailed description of the data sets used in the
experiments and the experimental methodology.

4.1 Data Description

Our data sets were obtained using the following two appli-
cations: Tenable’s Nessus vulnerability scanner and Lans-
weeper. The Nessus vulnerability scanner produces a
report containing all known vulnerability instances that are
present in an organization’s network. This report contains
information about the vulnerability and the host machine,

which includes the common vulnerability exposure (CVE)
code, host name, description, and the common vulnerability
scoring system (CVSS) value indicating the severity rating,
among other currently known factors. The Lansweeper
report contains information pertaining to the types and ver-
sions of software on each machine in the computer network.
We conducted our experiments using different data sets. In
this section, we explain our largest test data set, which con-
tained 8031 vulnerability instances found on 184 unique
hosts. Fig. 5 shows the number of vulnerability instances for
each of the CVSS severity ratings in this data set. It can be
seen that there is a greater number of vulnerability instances
belonging to the medium severity rating, when compared to
the critical, high, and low severity ratings in this data set,
which is typical in an organization’s network. The majority
of the vulnerability instances were found to be associated
with ports 80 (2000), 3389 (1251), and 443 (1128).

Through our conversations with the security personnel at
the CSOC and recent literature survey [2], we estimated the
personnel hours required for mitigating each of the vulnera-
bility instances in the data set. We created four bins (groups)
based on certain keywords associated with the solution
attribute of the vulnerability instances in the data set. Each
bin was given an estimated time range for vulnerability mit-
igation. Based on the keyword found in the solution attri-
bute of a vulnerability instance, a mitigation time estimate
was randomly selected from the time range of the respective
bin. Table 3 shows the four bins, the estimated time range,
and a sample of the keywords used to create these bins. For
example, a vulnerability instance with the keyword
’purchase certificate’ would be assigned a random time
between 0.5 and 1 h for its mitigation. Next, we explain the
experimental methodology.

4.2 Experimental Methodology

In the experimental methodology, we describe the steps
involved in conducting the experiments. We first describe
the experimental methodology for the machine learning-
based VPSS scoring model, followed by the decision sup-
port system for selection and allocation of vulnerability
instances for mitigation.

4.2.1 Machine Learning-Based VPSS Scoring Model

As shown in Fig. 4, first, a representative set of vulnerability
instances is selected for the VPSS score calculation. We
selected vulnerability instance samples (90,000) from histor-
ical data sets (reports) to create a training data set for build-
ing the machine learning (ML) model(s). We worked with

Fig. 5. Number of vulnerability instances per CVSS Severity rating.

TABLE 3
Personnel-Hours Estimation

Bins Estimated Time Range Important Keywords

Bin 1 0.5 to 1 Hour ’purchase certificate,’ ’re-issued certificate,’ ’disable sslv3,’ ’disable terminal services,’ ’contact
vendors,’ ’purchase ssl certificate’.

Bin 2 1 to 3 Hours ’reconfigure application ciphers,’ ’restrict ips database,’ ’reboot technet,’ ’limit traffic port’.
Bin 3 3 to 6 Hours ’patch windows,’ ’upgrade flexnet,’ ’version update,’ ’install patches,’ ’upgrade PHP version,’

’server upgrade’.
Bin 4 6 to 9 Hours ’update windows version,’ ’system update,’ ’system upgrade’.
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the security personnel at the CSOC to identify their prefer-
ence for the various VPSS factors (as shown in Fig. 3).
Through a combination of information from reports, ques-
tionnaire surveys, and discussions, the qualitative (categori-
cal) responses for the factors were obtained. Table 4 shows
the factors, sources, and methods used to elicit the
responses, and Table 5 shows a sample list of questions/
information needed. The numerical values were then
assigned to these responses, as described in Section 3.1. The
definitions of the factors and the rule-based method of
assigning the qualitative response and its corresponding
numerical value for each of the factors are described below.

� The relevance of the vulnerability instance was
quantified based on the type of host machine: a web
server, a database server, or an important stake-
holder machine. If a vulnerability was found on a
web or a database server (i.e., high relevance), then
the factor was assigned a score of 1; else if the host
machine was identified to be that of an important
stakeholder in the organization (i.e., medium rele-
vance), then it was assigned a score of 0.5; else a
score of 0.1 was assigned (indicating low relevance).

� The level of protection factor was quantified using
the version of the software (i.e., the version of the
operating system (OS) or special systems such as
the SQL) running on the host machine. The older the
software version, the less protection it may provide
against new cyber threats due to the limited (or non-
existent) support provided by the vendor. If the soft-
ware version of the host machine was not supported
by the vendor, then the level of protection was
deemed low and hence the qualitative response was
high (i.e., the priority was high). Table 6 shows a
sample of the score assignment for the level of pro-
tection factor in the VPSS. The information about the
software version was extracted using Lansweeper.
For instance, an operating system older than

Microsoft Windows 2008 or an SQL server version of
2008 or older was considered to have the lowest level
of protection and a vulnerability instance on such a
machine was assigned a score of 1 for this factor.

� Therewere four levels considered for the level of asset
criticality factor: critical-value, high-value, medium-
value, and low-value. These were identified by the
security personnel at the CSOC and they represented
four different sub-domains with the respective level
of asset criticality associated with them. A factor score
of 1, 0.5, 0.25, or 0.1 was assigned to each vulnerability
instance, based on the sub-domain of the host
machine. For instance, a vulnerability instance found
on a machine in the critical-value sub-domain was
assigned a score of 1 for the respective factor.

� The CVSS scores were extracted in numerical form
from the vulnerability scan report and were normal-
ized between 0.1 and 1, and accordingly scores were
assigned for this factor.

Finally, a composite VPSS score was calculated by taking
the weighted sum of the scores of all the aforementioned fac-
tors for each vulnerability instance in the data set. Upon dis-
cussions with the security personnel and conducting
sensitivity analyses using different combinations of the
weights, we found the strategy of assigning equal weights to
all the factors to be best for triaging the vulnerability instan-
ces. It is to be noted that an organization can fine-tune both
the assignment of numerical scores and the preference for the
factors in order to customize the VPSS to best suit its needs.

After the aforementioned measures, we now had a repre-
sentative data set with all attribute information, in a natural
language format, that provided all of the vulnerability
instances along with their respective VPSS scores. To obtain
important features and convert them into their respective
numerical values, we applied natural language processing-
based feature extraction techniques on this representative
data set. In particular, we used the term frequency-inverse
document frequency (TF-IDF) vectorizer to obtain

TABLE 4
Source and Method for Obtaining Factor Responses

Factor Source Method

Relevance Host Machine
Type

Lansweeper, Survey

Level of
Protection

Software Version Lansweeper, Nessus
Scanner, Survey

Level of Asset
Criticality

Sub-domain
Importance

Survey

CVSS Score NVD Nessus Scanner

TABLE 5
A Sample List of Questions

Number Question

Q1 Rating of the relevance of web and database servers.
Q2 Rating of the relevance of machines belonging to important stakeholders in the organization.
Q3 Rating of the relevant subnets/sub-domains in the network, based on asset criticality.
Q4 Number of analysts available and the personnel-hours allocated for cyber vulnerability management in a given time

period.
Q5 Average numbers of vulnerabilities mitigated by the various types of analysts in a given time period.

TABLE 6
Sample Scores for the Level of Protection Factor in the VPSS

Operating System SQL Version Response
(Score)

Windows OS 2008 or
older

2012 or older High (1)

Windows OS 2016 - OS
2012

2016 or older upto
2012

Med. (0.5)

Windows OS 2016 or
newer

2016 or newer Low (0.1)
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important combinations of words. Using n-grams, we tried
three values of n: 1, 2, and 3, which generated additional
features in this training data set. A higher value of n may
increase the accuracy of the model, but it also increases the
computational costs. We did not find a significant difference
in the MSE values when n was equal to 1 compared to
higher values of n. With n ¼ 1, an additional 11,589 features
were generated for this training data set. Next, we devel-
oped supervised learning models by training on this data
set with the VPSS score as the response (dependent) vari-
able. In particular, we developed tree-based (random forest)
and nonlinear (deep neural networks) supervised machine
learning models due to the high sparsity found in this data
set. We used Python programming language with Scikit-
learn and Keras libraries to build and train these models.
Table 7 (8) shows sample values of the tunable parameters
(hyperparameters) considered for the random forest (deep
neural networks) model.

4.2.2 Decision-Support System

Based on our conversations with the CSOC, we determined
the values for the input parameters for the selection and the
allocation models. The total number of personnel-hours (T
in Algorithm 1) available on a weekly basis was set to 160
hours (equivalent of four full-time security personnel) for

vulnerability mitigation. From the historical vulnerability
mitigation data, the information about the types of vulnera-
bility instances mitigated by each of the security analysts
can be obtained. This information was learned from the his-
torical vulnerability data and the appropriate adjustments/
changes were made by the CSOC to establish the ground
truth. Table 9 shows the four analyst skill types that were
created based on the operating system (OS) expertise and
familiarity with the network segment/host machines con-
taining high-value assets. For instance, a senior analyst with
expertise in using a Microsoft Windows OS and familiarity
with the machine(s) containing the different types of asset
(s) belonged to analyst skill type 1. Next, using text analyt-
ics, the various types of vulnerabilities in the data sets were
categorized based on the OS and asset types, and used this
information to match the analyst skill types to the vulnera-
bility instances. Table 10 shows the different types of vul-
nerability instances based on the OS and the asset
information. A perfect match between the analyst type and
the vulnerability instance is shown under the ‘Matching
Vuln. Type’ column in Table 9. Fig. 6 shows the total num-
ber of vulnerability instances per type found in the training
data set. Correspondingly, Fig. 7 shows the estimated time
required for mitigating these vulnerability instances per
type by the matching analyst skill type (see Table 10). It is
noted that there is a large number of vulnerability instances

TABLE 7
A Sample of Tunable Parameter Values for Random Forest Model

Tunable Parameter Value Set 1 Value Set 2 Value Set 3 Value Set 4

n_estimators 200 200 200 200
max_depth 200 None None 500
min_samples_split 4 2 2 2
ccp_alpha 0.02 0.01 0.02 0.00
MSE 0.029 0.011 0.029 0.012

TABLE 8
A Sample of Architectures Used for Deep Neural Networks

Hyperparameter Value Set 1 Value Set 2 Value Set 3

Number of hidden layers 4 6 4
Number of neurons per layer 128, 256, 256, 256 512, 256, 128, 64, 32, 16 256, 128, 64, 64
Activation function relu relu relu
Epochs 500 500 200
Batch Size 32 32 64
MSE 0.0123 0.0120 0.0120

TABLE 9
Matching Security Analyst SKill and Vulnerability Types

Analyst Skill
Type

Expertise Matching Vuln.
Type

Type 1 Windows OS and critical-/high-
value assets

1,3

Type 2 Linux OS and critical-/high-
value assets

2,4

Type 3 Windows OS and medium-/low-
value assets

5,7

Type 4 Linux OS and medium-/low-
value assets

6,8

TABLE 10
Vulnerability Types

Vuln. Type Asset and OS Type

Type 1 Critical-value asset and Windows OS
Type 2 Critical-value asset and Linux OS
Type 3 High-value asset and Windows OS
Type 4 High-value asset and Linux OS
Type 5 Medium-value asset and Windows OS
Type 6 Medium-value asset and Linux OS
Type 7 Low-value asset and Windows OS
Type 8 Low-value asset and Linux OS
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found in machines running with a Microsoft Windows OS,
which are in the same network segment that contains high-
value assets (i.e., type 3). In our experiments, an additional
10% (x% in Algorithm 1) was added to the estimated mitiga-
tion time if the vulnerability instance type did not match the
analyst skill type, in discussion with the CSOC. This num-
ber can be obtained from historical security personnel key
performance indicator data or with the help of the CSOC
manager (through a survey). This additional time value is
used as a cost or a penalty that would force the optimization
algorithm to minimize the sub-optimal pairings. This addi-
tional time comes into consideration when evaluating the
various candidate solutions in Algorithm 1 to obtain a solu-
tion with minimum sub-optimal pairings. Fig. 8 shows the
total (regular) time available for vulnerability mitigation
per analyst type, per week (Rk in Algorithm 1). The sequen-
tial optimization algorithm was executed for 52 iterations
on this data set (with 8031 vulnerability instances), where
each iteration represented a one-week time period. The
results were recorded for each iteration for all the methods
(the proposed VPSS-based, CVSS value-based, KPI-driven,
and VULCON), which were described in the previous sec-
tion. Next, we explain the results obtained from the
experiments.

5 ANALYSIS OF RESULTS

In this section, we present the results obtained from the con-
ducted experiments and provide an analysis of these

results. First, we present the results for the ML-based VPSS
scoring model, followed by the selection and allocation
models of the decision-support system.

Tables 7 and 8 show the MSE values obtained using the
tree-based and the nonlinear models, respectively. Based on
the lowest MSE values obtained using the various configu-
rations of each of these models, we selected the ‘Value Set 2’
configuration of the random forest approach to be the VPSS
scoring model. It is to be noted that a non-zero cost com-
plexity pruning parameter (ccp_alpha) value can help
counter the issue of over-fitting (i.e., a low ccp_alpha value
makes a model robust against some variations in the data
samples, which should give a better performance by accu-
rately estimating the VPSS scores of unseen data samples).
Next, we present the results of the selection model and com-
pare them with those obtained using the CVSS value-based,
KPI-driven, and VULCONmethods.

Fig. 9 shows a comparison of the performances of all the
vulnerability selection methods over a 52-week period. The
reported numbers are cumulative from the first iteration
until the respective iteration number. It can be seen that the
proposed approach using the VPSS-based selection model
of the decision-support system is able to select vulnerability
instances for mitigation with the largest cumulative vulner-
ability exposure score. This proposed model is shown to sig-
nificantly outperform the KPI-driven method after the first
10 iterations, as the latter method is a greedy approach that
focuses on selecting a greater number of vulnerability
instances rather than selecting the ones that reduce the total
vulnerability exposure of an organization. It can also be
observed that the VPSS-based method outperforms the
CVSS value-based and the VULCON methods throughout
the 52-week period, which was the objective of the optimi-
zation model.

Fig. 10 shows the number of vulnerability instances
selected from the web and database servers (pertaining to
the relevance factor) using different methods. It can be seen
that the VPSS-based selection model is able to outperform
the other methods by selecting a greater number of vulner-
abilities that are found in organization-specific relevant
machines over the 52-week period. In particular, a greater
number of vulnerabilities are prioritized from the web and
database servers for mitigation using the proposed VPSS-
based method when compared with the other methods. We

Fig. 6. Number of vulnerability instances per type.

Fig. 7. Estimated mitigation time for vulnerability instances per type.

Fig. 8. Time available for vulnerability mitigation per analyst type.
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note an interesting observation with the performances of the
VPSS-based and the VULCON methods. In our vulnerabil-
ity data set, some of the critical- and high-value assets were
found on web and database servers. As a result, with
VULCON’s built-in feature to give a higher rank to vulner-
abilities found on the critical servers (critical/high value
assets), it selects a greater number of vulnerabilities that are
found on these servers (as observed in Fig. 10, between the
iteration range of 5 to 30). However, the objective of the pro-
posed VPSS-based method is to select vulnerabilities for
mitigation that reduce the organization’s exposure score,
which is maintained throughout the 52-week period (Fig. 9).

Fig. 11 shows the total number of vulnerabilities selected
for mitigation for each method, which are found on
machines with a low level of protection (see Table 6). In par-
ticular, the VPSS-based approach is able to prioritize

selection of vulnerabilities associated with machines run-
ning Windows OS 2008 (and older) and SQL version 2012
(and older). These machines, with limited or no support
provided by the vendor, have less protection and are more
susceptible to new cyber threats/attacks. It can be observed
that the VPSS-based selection model performs the best
among all of them, followed by the VULCON and the KPI-
driven methods. This result points out one of the drawbacks
of the CVSS value-based vulnerability selection method, in
that vulnerabilities with low CVSS values that are found on
more susceptible machines (with a low level of protection)
in an organization’s network are not selected for mitigation.
Fig. 12 shows the total number of vulnerabilities selected
from/in the vicinity of machines with critical- and high-
value assets over the 52-week period. It was observed that
the VULCON method, with the built-in feature of ranking
vulnerabilities found on critical hosts higher than other vul-
nerabilities, performs as well as the proposed VPSS-based
method. It can also be observed that the KPI-driven method
selects a greater number of vulnerabilities than the VPSS-
based method because many vulnerabilities pertaining to
high-value assets had a lower estimated mitigation time
associated with them (i.e., they belonged to bins 1 and 2in
Table 3). It was also noted that the proposed VPSS-based
method selected a greater number of vulnerabilities pertain-
ing to the critical-value assets when compared to the KPI-
driven method.

Fig. 11. Comparison of the number of vulnerabilities selected from
machines with a low level of protection.

Fig. 12. Total number of vulnerabilities selected from high and critical
value assets.

Fig. 10. Comparison of the number of vulnerabilities selected from orga-
nization-specific relevant machines.

Fig. 9. Comparison of the exposure score of selected vulnerabilities.
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Figs. 15a and 15b shows the comparisons in the perform-
ances of all the methods in terms of the number of vulner-
abilities that were selected based on their CVSS severity
ratings. The CVSS value-based method outperforms all the
other methods by selecting a greater number of vulnerabil-
ities with critical and high severity ratings. Another interest-
ing observation was made when comparing the results
obtained from the CVSS value-based and the VPSS-based
methods in the first iteration. It was observed that there
were four vulnerability instances whose CVSS values were
nine. One of the vulnerability instances was found on a
machine that was organizationally more relevant (database
server) and required an estimated mitigation time of six
hours. The other three vulnerability instances were found in
other parts of the network on machines that were not recog-
nized to be relevant and the cumulative estimated time
required to mitigate all three of them was six hours. The
output of the VPSS-based method contained the first vulner-
ability instance along with other context-sensitive vulnera-
bility instances, while the output of the CVSS value-based
method contained the other three vulnerability instances
along with other vulnerability instances of high CVSS sever-
ity values (nine and over). This result points out another
drawback of the CVSS value-based method of prioritizing
vulnerabilities, in which organizational context is not taken
into consideration. On the contrary, the VPSS-based method
takes into account both the organizational context and the

severity of a vulnerability, and selects the ones for mitiga-
tion that reduces an organization’s vulnerability exposure
score. We were able to identify similar interesting results
and reported our observations to the security personnel,
who were able to validate the inherent security risk associ-
ated with the selected vulnerabilities and the respective
host machines.

To further understand the impact of our proposed
approach on the security posture of the organization, we
selected a subset of important host machines to compare the
results of prioritization of vulnerabilities found on them
using the various approaches. The selected host machines
were identified as relevant machines (i.e., web servers, data-
base servers, and important stakeholder machines) and
they also belonged to sub-domains identified with high and
medium level of asset criticality. Fig. 13 shows the number
of vulnerability instances selected for mitigation from the
top 40 host machines, which had the largest number of vul-
nerability instances reported over the 52-week period. The
VPSS-based method is able to select a greater number of
vulnerability instances and the model selects them sooner
(on an average, at least two iterations faster) compared to

Fig. 13. Performance comparison on top host machines.

Fig. 14. Performance comparison on individual host machines.

Fig. 15. Comparison of the number of vulnerabilities selected with (a) critical CVSS severity rating and (b) high CVSS severity rating.
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the other three methods. Fig. 14 shows the performance of
all the methods on three individual sample machines (out
of the 40 total machines). It can be clearly seen that the
VPSS-based method outperforms the other methods in
selecting a greater number of vulnerabilities for mitigation
at an individual (important) machine level, which assists in
strengthening the security posture of the organization.

The output of the allocation model of the decision-sup-
port system is the assignment of vulnerability instances to
the available security analysts. The allocation model ensures
that the number of matching pairs of vulnerability instance
type and security analyst skill type (as per Table 9) is maxi-
mized. Figs. 16a and 16d shows the % of matching pairs per
security analyst skill type for the entire duration of 52
weeks. It can be observed from Fig. 16a that 92% of vulnera-
bility instances from type 1 and 3 were optimally allocated
to security analysts from skill type 1. Fig. 16b shows that
61.5% of vulnerability instances allocated to analysts from
skill type 2 were optimally matched as well (from vulnera-
bility types 2 and 4). Similar observations were noted for
analyst skill types 3 and 4, where a majority of the vulnera-
bility instances allocated were optimally matched to the
respective vulnerability types (per Table 9). It is to be noted
that the decision-support system is iteratively executed, in
which the selection model first selects the context-sensitive
vulnerabilities and then the allocation model finds the
matching pairs. Any sub-optimal allocation is due to the
disparity in the time required to mitigate vulnerability
instances of a particular type and the time available for miti-
gation by analysts with matching skill type in that iteration
(week). As a result, we observe that in Fig. 16a, 1.3%, 3.4%,
and 3.3% of vulnerability instances are sub-optimally allo-
cated to analysts from skill type 1 instead of skill types 4, 3,
and 2, respectively. Similarly, due to this disparity where
less time was required to mitigate vulnerability instances of
types 2 and 4, and more time was available for mitigation
by analysts from skill type 2, the additional time was

allocated to mitigate vulnerability instances of other types.
For instance, 14.7% of vulnerability instances allocated to
analyst skill type 2 were from vulnerability types 1 and 3
due to a large number of them present in the data set).
Fig. 17 shows the number of vulnerability instances that
were selected for mitigation from the data set over the 52-
week period and the number of vulnerability instances that
were then optimally allocated among them, per vulnerabil-
ity type. Experiment results obtained on other data sets
were statistically similar.

6 SUMMARY OF META-PRINCIPLES AND

CONCLUSIONS

The meta-principles obtained from this research study are
as follows:

1) Given a natural language-based vulnerability data
set, the combination of feature extraction, using the
term frequency-inverse document frequency (TF-
IDF) statistical measure and supervised learning
with a Random Forest approach, is found to be an
ideal choice for the development of a robust machine
learning-based vulnerability priority scoring system
(VPSS).

2) The VPSS-based vulnerability selection model for
mitigation outperforms all the other methods that
are currently employed at cybersecurity operations
centers (CSOCs) and proposed in recent literature, in
terms of selecting the context-sensitive vulnerabil-
ities for mitigation to minimize the total vulnerabil-
ity exposure score of an organization. The
VPSS-based method takes into account both the
organizational context and the severity of a vulnera-
bility in order to prioritize vulnerabilities for mitiga-
tion. Because of the combined effect of the VPSS
factors in the exposure score, an organization can be
informed about the inherent security risk associated
with the vulnerabilities selected for mitigation.

3) The drawback of the widely used common vulnera-
bility scoring system (CVSS) is that the vulnerable
host machines in an organization’s network may
remain unpatched for a long duration when
the CVSS severity rating of the vulnerabilities found

Fig. 17. Comparison of number of vulnerabilities selected and optimally
allocated per vulnerability type.

Fig. 16. Allocation of vulnerability types per analyst skill type: (a) skill
type 1, (b) skill type 2, (c) skill type 3, and (d) skill type 4.
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in them is not high and they are, in turn, not
prioritized.

4) The two-step sequential approach proposed for the
decision-support system ensures that the context-
sensitive vulnerabilities are selected for mitigation
without putting any hard constraints on effectively
matching the type of vulnerability instance and the
skill type of the security personnel. The allocation
model is executed after the selection model selects
the optimal set of vulnerabilities for mitigation that
reduces the vulnerability exposure score of an
organization.

In this paper, we developed a novel advanced analytics and
optimization framework for context-sensitive vulnerability
management. In particular, we presented a machine learning-
basedvulnerability priority scoring system that prioritizes vul-
nerabilities for mitigation by taking both the organizational
context and the severity of the vulnerabilities into consider-
ation. We then presented a decision-support system, consist-
ing of sequential optimization models for selection and
allocation of vulnerabilities for mitigation. The experiments
performed on the real-world vulnerability data sets demon-
strated the superior performance of our approach in selecting
context-sensitive vulnerabilities for mitigation, when com-
pared with the currently employed vulnerability selection
methods at the CSOCs and a recently proposed vulnerability
prioritization method from literature. The security posture of
an organization can be further improved by this proposed
decision-support system, which optimizes the number of
matching pairs of the types of vulnerability instances and the
security personnel skill types for mitigation. Our framework is
scalable and deployable at the CSOCs, and a paradigm shift in
theway vulnerabilitymanagement is performed today.

As a part of future work, correlation among vulnerabil-
ities can be taken into consideration when selecting and
allocating vulnerabilities for mitigation. A trade-off study
comparing time-saving due to allocation of correlated vul-
nerabilities to the same security personnel and their poten-
tial burnout due to repetitive work could be conducted to
further understand its impact. Another direction for future
work is to develop methods for optimal staffing and sched-
uling of security personnel for vulnerability management in
the wake of uncertain arrivals of vulnerability instances.
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