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ABSTRACT

Although Machine Learning (ML) based approaches have
shown promise for Android malware detection, a set of criti-
cal challenges remain unaddressed. Some of those challenges
arise in relation to proper evaluation of the detection ap-
proach while others are related to the design decisions of the
same. In this paper, we systematically study the impact of
these challenges as a set of research questions (i.e., hypothe-
ses). We design an experimentation framework where we can
reliably vary several parameters while evaluating ML-based
Android malware detection approaches. The results from
the experiments are then used to answer the research ques-
tions. Meanwhile, we also demonstrate the impact of some
challenges on some existing ML-based approaches. The large
(market-scale) dataset (benign and malicious apps) we use
in the above experiments represents the real-world Android
app security analysis scale. We envision this study to en-
courage the practice of employing a better evaluation strat-
egy and better designs of future ML-based approaches for
Android malware detection.

1. INTRODUCTION

Android devices and apps are becoming increasingly pop-
ular. According to a recent Gartner report [1], Android de-
vices held an 80.7% share in the 2014 sales of smartphones,
totaling nearly one billion units. The most popular app store
is Google Play holding more than one million apps and hav-
ing a user population of more than one billion. The huge size
of the Android ecosystem also attracts many attackers. As
many security companies have recently reported [13, 17], the
Android ecosystem is infected with malware. These malware
apps do various nefarious activities, such as stealing user cre-
dentials and private information, sending text messages to
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premium numbers, etc. This is a major problem with high
stakes warranting immediate attention.

One direction for detection of Android malware apps is to
tap the power of Machine Learning (ML) algorithms. Sev-
eral efforts explored this direction and proposed solutions [5,
6, 9, 21] in the recent past. A typical ML-based approach for
Android malware app detection (ML-approach henceforth)
employs a classifier (e.g., an off-the-shelf ML classifier, such
as k-NN) which is trained by a training set consisting of
known benign apps and known malware apps. To evaluate
the classification performance, the number of correctly and
incorrectly classified apps is measured on a test set whose
labels are unknown to the classifier at the time of evalua-
tion. Although the results of the ML-inspired approaches
look promising, many critical research questions still remain
unanswered. There exists substantial room for clarification
and improvement.

In this paper we investigate challenges that are faced in
applying ML for Android malware app detection. We have
studied the existing ML-approaches, and found that they all
are affected by one or more challenges as discussed below.

Challenges in ensuring proper evaluation: These chal-
lenges arise in selecting the evaluation metrics as well as in
collecting and preparing the data (e.g., correctly labelling
the apps in training/test set). We see that most of the cur-
rent ML-approaches are impacted by related factors: (a) the
evaluation strategy does not follow a common standard; (b)
the ground truth on which these approaches are evaluated
lack reliability.

Challenges related to algorithm design: These challenges
arise in the design space of the ML-approaches. For instance,
one challenge is to construct an informative feature set for
the classifier. For example, in the Drebin work [5] the feature
set contains hundreds of thousands of items, and many items
(such as the names of the app components) are arbitrary
strings at app developer’s choice. This raises a question on
whether all items in this large feature set are really helping
the classifier or if a subset can be sufficient (or even better).

The previously proposed ML-approaches focused more on
a specific setting defined by factors such as specific evalua-
tion metrics, ground truth quality, composition of the train-
ing/test data, the feature set, and others. The reported per-
formance results are then measured in the particular setting.
However, since the setting varies widely across different ap-
proaches, it is difficult (if not impossible) to fairly compare



the results. For many of the recently proposed solutions,
we are not aware of the impact of the above factors on the
classifier performance.

To systematically study the impact of the aforementioned
factors, we formulate a set of research questions (RQs) which
we answer in this paper. We refer to these factors as impact
factors (IFs) from now on. To facilitate our study, we de-
signed an experimental framework that has the capability of
evaluating a given ML-approach. Furthermore, we designed
a candidate ML-approach named c-approach so that we can
reliably vary the parameters (corresponding to IFs) while
evaluating it on our experimental framework. The results
from these experiments in turn answer the RQs.

Through our experiments we show that the IFs play a sub-
stantial role in the performance evaluation results. We argue
that we have to take into account the IF's if we want to com-
pare different ML-approaches in an unbiased way. Further,
to the best of our knowledge, ours is the first ML-based work
that studies a large scale (Android market-scale) data, which
includes nearly 1 million Google Play apps, and about 250K
adware/malware apps. The largest benign dataset consid-
ered by a previous ML-approach had about 120K apps [5]
while the largest malicious dataset had 24K apps [6]. We
strongly believe that our large data set is substantially bet-
ter representative of the real world.

Our overarching contribution lies in our attempt to make
the research community aware of a set of critical challenges
in designing a ML-approach for Android malware detection.
In particular, our main contributions are as follows.

e We formulated a set of research questions (RQs) hy-
pothesizing the role of the impact factors (IFs), such
as (a) the metrics used, (b) the characteristics of the
base data set, (c) algorithm sophistication, etc. on an
ML-approach’s evaluation results.

e We designed an experimental framework and exten-
sively studied our c-approach in different settings. The
results of our experiments give answer to the RQs.

e Our work is the first to study a market-scale dataset in
the context of ML-based Android malware detection.

2. CHALLENGES IN APPLYING ML FOR
ANDROID MALWARE DETECTION

We formulate a set of research questions (RQs) hypoth-
esizing the influence of the impact factors (IFs) that stem
from the challenges in applying ML in Android malware de-
tection. Below we categorize the challenges and discuss them
in more details. For each such category, we introduce the
list of corresponding RQs, which we experimentally study
later in this paper.

2.1 Challenges in ensuring proper evaluation

To ensure that the ML-approach is evaluated properly is
not straightforward. The related challenges fall under two
subcategories as follows.

Challenges in deciding the evaluation metrics. The
evaluation metrics for an ML-approach are not yet standard-
ized and different ML-approaches rely on different metrics?.
For instance, DroidSIFT [21] and MUDFLOW [6] report the

!The definition of the commonly used metrics are available
in Section 3.3
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performance results in terms of true positive rate (TPR)
and false-positive rate (FPR). Other existing works, such as
MAST [9] and Drebin [5] present the Receiver Operating
Characteristic (ROC) plot, which is a generalized represen-
tation of TPR and FPR while the separating threshold is
varied. Further, the ML-community has reported [10] that
if the dataset is highly imbalanced, the PRC (precision-recall
curve) is a better metric for measuring classifier performance
than the traditional ROC curve. Given that the Android
malware domain is highly imbalanced, i.e., the ratio of mal-
ware to benign apps in the real-world is highly skewed (1:100
or up), the above facts raise substantial doubt on whether
current works are using the best metric.

e RQ1: Is ROC the best metric to evaluate ML-based
malware detection approaches?

Challenges due to characteristics of the input data.
These challenges are related to data preparation, e.g., la-
belling the apps, composing the training/testing set, and so
on. We see that these challenges are applicable to all the cur-
rent ML-approaches. For instance, the age of input data may
pose one challenge. Dated apps vs. recent apps could lead to
very different evaluation results in some cases. Deciding the
data composition is another challenge, e.g., selecting the ra-
tio between positive class (malware apps) size and negative
class (benign apps) size in the test data, which may lead to
different performance results of the classifier. To ensure re-
alistic evaluation, we should conform to the real-life ratio of
malware and good apps in the app store, but unfortunately
this is not practiced in many existing works. Furthermore,
the ground truth is noisy in reality while manually labelling
million plus apps is not feasible. So, we have to depend
on security companies’ report on those apps (if available),
which effectively lead to imperfect ground truth. We see
that the ground truth on which the current ML-approaches
depend on is not fully reliable, which has a negative im-
pact in two ways: (i) if training data has noise (mislabeled
apps), the classifier mislearns things, which will negatively
influence the classification performance. (ii) if test data has
noise, we evaluate on wrong ground truth, and then, the re-
ported performance results can be misleading. In addition,
presence of adware apps (which show unwanted advertise-
ments to the user) in the dataset leads to further challenges.
As adware has similarities to both benign and malware apps,
it is often challenging to label an adware, e.g., including ad-
ware in the malware set, or in the benign set, or dropping
adware from the dataset altogether. The existing works dif-
fer on this choice, which further complicates attempting to
compare their performance.

e RQ2: Does the age of malware in training/test set
mislead performance?

e RQ3: Does classifier performance degrade as we ap-
proach real-world ratio of malware and benign apps?

e RQ4: Does quality of ground truth affect the perfor-
mance?

e RQ5: Does presence of adware in the dataset affect
the performance?



2.2 Challenges in the algorithm design

These challenges are related to the design of the ML-
approach itself. One challenge is to construct an informative
(i.e., discriminative across the classes) feature set for the
classifier. Some of the existing approaches are overwhelmed
by this challenge. As an example, the Drebin approach [5]
uses a very large feature set. One may want to know whether
the classifier really needs this large feature set or only a
subset of these items could be sufficient. We note that the
size of Drebin’s feature set is correlated with the size of its’
dataset—it has nearly 500K features while applied on the
authors’ dataset [5], but when we emulated Drebin feature’s
extraction on our larger dataset we achieved more than 1
million features. Do we really need these many features?
How to identify and select strong, discriminative features is
a challenge.

e RQ6: Are more features always better?

2.3 Challenges in data collection

We have discussed above the challenges due to charac-
teristics of the dataset. Collecting a large dataset of apps
itself poses a formidable challenge. Attempting to collect
modern apps is an even more challenging task. Although
Google Play provides the whole set of ‘free’ apps (over 1.4
million), there is no ‘download APT’ available. So, we need
to rely upon app store crawlers like PlayDrone [18] that pe-
riodically scan the Google Play app store and collect entire
snapshots of the store. The very most recent apps, however,
are not always available in the PlayDrone archive. Moreover,
collecting a large set of adware and malware apps, is also
challenging — we have to rely on several sources. VirusShare
and anti-virus companies provide large datasets of poten-
tially malicious apps. These sets, however, are often noisy
and impure, sometimes containing benign apps, Win32 bina-
ries, and even blank apps. We believe that the large amount
of data, even if somewhat noisy, provides further credibility
to our results. To reduce the computation complexity of the
ML-approach is a further challenge. It is not straightforward
how to design a scalable ML-approach. When considering
the millions of apps in the Play store, and the thousands of
new apps added every day, scalability is of paramount im-
portance. As an example of the degree of this challenge, we
take note of MUDFLOW [6] authors’ comment that some-
times their system took more than 24 hours to analyze one
single Android app.

3. EXPERIMENTAL FRAMEWORK

We designed an experimental framework to study the chal-
lenges faced by the existing ML-based Android malware de-
tection approaches. Our framework utilizes the ML-suite
Weka [12] which provides a set of off-the-shelf classifier tools
(e.g., SVM, k-NN, etc.). To examine the research questions
we pose, we also designed a candidate ML-approach named
c-approach. The c-approach uses the k-NN classifier. The
experimental framework puts into consideration a number of
factors such as ground truth preparation, feature construc-
tion, and evaluation, which enables it to examine different
ML-approaches. While studying a particular ML-approach,
we choose the corresponding data preparation strategy, fea-
ture construction algorithm, and evaluation strategy. Below
we discuss how we set up our experimental framework to
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study an ML-approach, which we explain mainly with the
example of c-approach.

3.1 Ground truth preparation

We collected Android apps from app stores like Google
Play store, as well as malware archives like VirusShare, and
other third party companies like Arbor Networks. Specifi-
cally, we made use of the app archive built by an existing
Android app crawling tool named PlayDrone [18] that col-
lected approximately 1.4 million Android apps from Google
Play in October 2014. We also gathered about 35K poten-
tially malicious apps from VirusShare and 24K potentially
malicious apps from Arbor Networks.

In order to prepare reliable ground truth data, we utilized
VirusTotal [3], which is a free online service that can be used
to check the maliciousness of files and URLs. In particular,
when an app is queried against VirusTotal, it uses different
(currently as many as 54) anti-virus (AV) products and scan
engines to check for potential maliciousness. If the app has
been scanned before, a user can query by the hash value
(e.g., md5 or shal) of the app and could instantly get an ag-
gregated scan report from the anti-virus companies. Among
all the apps mentioned above, we found that VirusTotal al-
ready has reports for about 1 million apps. Considering the
apps with no malicious label as benign and those with at
least one malicious label as malicious, we ended up with
about 855K benign apps and 247K malicious apps.

Data: VirusTotal reports for all the collected apps
Result: Benign app set B, malware app set M, adware
app set A
foreach report; € VirusTotal reports do
Let n = number of malicious flags in report;;
if n ==0 then
‘ Add app, in set B;
end
else if n > 0 then
Let a = number of adware labels in report;;
Let m = number of malware labels in report,;
if a > m then
‘ Add app, in set A;
end
else
‘ Add app; in set M;
end

end

end
Algorithm 1: Separation algorithm for benign app, mal-
ware, and adware

Within those malicious apps, we note that the apps can be
further divided into adware and malware. We divide them
into malware and adware to study their features separately
as well as to prioritize the correct identification of malware
apps above all else. The detailed scheme for separating be-
nign apps, malware, and adware is described in Algorithm 1.
Particularly, for the purpose of distinguishing malware and
adware, we prepare a keyworld list for each category. For in-
stance, adware keywords contain common words indicating
‘ad’ (e.g., ‘adware, ‘AdDisplay’, ‘MultiAds’, etc.) and com-
mon ad companies (e.g., ‘Airpush’, ‘RevMob’, etc.). Mal-
ware keyword list includes words indicating maliciousness
(e.g., ‘Trojan’, ‘Malware’, ‘Exploit’, etc.) and the malware



family names like ‘DroidKungFu’, ‘Fakelnst’, etc. After pro-
cessing all VirusTotal reports with the keywords list, Algo-
rithm 1 provides us with about 141K adware, 106K malware,
and 855K benign apps, and all of our subsequent experi-
ments will select a subset of apps from this app universe.
We also note that more than half of our malicious apps
are actually collected from the PlayDrone snapshot of the
Google Play store. This constitutes about 20% of the apps
from Google Play, which is significantly higher than 0.1%
as reported in Google’s 2014 Android security report [11].
The reasons for this difference could be: (1) Some of these
problematic apps have been detected and removed from the
Play store since the latest PlayDrone snapshot was taken;
(2) VirusTotal reports contain false positives, especially for
those apps that are detected as malicious by only a few AVs.
In order to study the impact of the quality of ground truth
(i.e., rate of false positives in the VirusTotal reports) on the
ML-approach’s performance results, we build different qual-
ity levels of ground truth.? In particular, we split malicious
apps (including malware and adware) into different levels
of certainty based on the number of malicious labels in the
VirusTotal reports. The apps with higher number of mali-
cious labels are considered as higher credibility apps, since
the presence of maliciousness is verified by several differ-
ent AVs. Particularly, we consider apps with greater than
or equal to 10 malicious labels to be high quality malicious
apps, and apps with only 1 malicious label as low quality
ones. With this logic, we achieve 79K high quality mali-
cious apps and 85K low quality malicious apps, and the rest
of malicious apps are considered as neither high quality nor
low quality apps. Note that for most of the RQs (i.e., all but
RQ4) we do not enforce any constraints regarding malware
quality so as to represent a more real-world dataset.

3.2 Feature construction

To experiment with an ML-approach in our framework, we
need to realize the feature extraction procedure as defined in
that particular approach. In addition to implementing the c-
approach, we also emulate the feature extraction of Drebin’s
[5] and DroidSIFT’s [21]. We particularly chose these two
ML-approaches because they provide two canonical exam-
ples: (i) Drebin is unique in terms of using huge number (in
order of hundreds of thousands) of features; (ii) DroidSIFT
is unique in using a feature vector that is based on graph
distance related to API dependance graphs. We note that
to answer most of the RQs (i.e., all but RQ6) we utilize the
c-approach while to answer RQ6, regarding quality of fea-
tures, we make use of the emulated features of Drebin’s and
DroidSIFT’s.

3.2.1 Forimplementing c-approach

Android is a privilege-separated operating system, in which
each application operates in a process sandbox. It is re-
quired for each application to declare the permissions they
require, and the Android system then prompts the user for
consent at the time the application is installed. It has been
shown [22] that a malware app often requests a pattern of
permissions that are distinct from legitimate apps. This
distinction can be used as indicators for potential malicious
functionality. Particularly, we extract Android permission
requests from the Manifest file and intent action strings

2We utilize these different ground truth datasets for the ex-
periment in RQ4 as discussed in Section 4.2.
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from static analysis of disassembled code, and presence of
‘.50’ or ‘.apk’ files within the main application archive. After
carefully studying the related Android documents and other
ML-approaches (e.g., MAST [9]), we have selected a set of
151 permissions, 112 intent action strings, and presence of
.50’ or ‘.zip’ in our feature set. Given an app, we extract
these 265 features through a lightweight static analysis.

Since API level information conveys substantial semantics
about app’s behavior, researchers [5, 21] also proposed API
level features (e.g., method name, class name, etc.) to de-
tect Android malware. We also use APIs as features while
we select the set of critical APIs by studying 100K benign
apps and 15K malicious apps. Specifically, we extract all the
(uni-gram) method names from the disassembled app byte-
code and calculate the overall usage ratio of each method in
benign apps versus the malicious ones. We then select 101
methods that are most commonly associated with malicious
apps and 100 methods most likely to be associated with be-
nign apps. We note that an app typically contains a few
third-party libraries and many apps share the same popular
third-party libraries (web APIs, ad libraries, etc.). Thus, to
capture the individual app-behavior, during the process of
extracting uni-gram methods, we exclude those APIs that
only appear within known third-party libraries.

According to our app analysis experiences, we observe
that malware apps are often obfuscated. We conjecture
that malware authors are more inclined (compared to be-
nign apps) to obfuscate their apps since it helps disguise
their malicious code. It is challenging to determine whether
an app is obfuscated or not, and furthermore, if it is obfus-
cating proprietary information or malicious behavior. Nev-
ertheless, we found certain information which can serve as
a strong indicator of obfuscation. For example, class names
like ‘a.a.*’ is a simple obfuscation technique that is used
by default within many tools such as Proguard [14]. Ad-
ditionally, certain Android obfuscators encrypt the original
application file and decrypt it dynamically and load it via
‘DexClassLoader’ when executed. By studying obfuscating
techniques, we further extend our feature set by including 5
features that are related to obfuscation.

In summary, we extract 471 features from the above 5
categories (permissions, intent actions, discriminative APIs,
obfuscation signatures, native code signatures).

3.2.2  For emulating Drebin features

Drebin [5] is unique in terms of using huge number (in
order of hundreds of thousands) of features while providing
very impressive classification performance. Recall that we
investigate in RQ6 whether all the features in the feature
set are “informative.” So, to answer RQ6 we are interested
to study Drebin’s features. Drebin authors do provide the
feature vectors of their own dataset for evaluation by other
researchers. However, the feature extraction program is not
available while Drebin features are correlated with dataset.
We thus develop our own tool to extract the same features
based on the description in the Drebin paper, so that we can
extract the Drebin-style feature vectors from the same base
dataset we have used for our other experiments. Drebin’s
feature set depends on the input app set because many of
Drebin’s features are raw strings which appear in the mani-
fest file or in the disassembled code of the app. In particu-
lar, Drebin extracts four types of features (hardware compo-
nents, requested permissions, app components, and filtered



intents) from the manifest file, and another four types of
features (restricted API calls, used permissions, suspicious
APT calls, URLSs) from the disassembled code.

We could readily emulate the feature extraction for all
types of the manifest features and one type of code features
(URLs). We wrote Regular Expressions (RegEx) to match
the style of these features and then feed those RegEx’s into
our scalable feature extractor. In addition, we emulated the
extraction procedure of the remaining types of the ‘code’
features after we received further information (s.e., entire list
of ‘suspicious API calls’, and the ‘API-permission mapping’)
from the Drebin authors via private communication.

We parallelized feature extractions across a High Perfor-
mance Computing Cluster (HPCC) to extract features on
our own dataset. Extracting Drebin-style features was a sub-
stantially more computationally complex process than our
c-approach due to the sheer number of features extracted,
per-app. We note that due to a larger base dataset, we also
extracted a larger feature universe. We generated over one
million features from only around 180K apps, and thus did
not attempt to extract all features for our whole dataset.

3.2.3  For emulating DroidSIFT features

In addition to Drebin, we were inspired by the design of
DroidSIFT [21] features, which are based on API depen-
dency graph distances. Hence, DroidSIFT features are ex-
pected to be rich in semantics. So, to answer RQ6, we also
chose to study the DroidSIFT features. As the DroidSIFT
tool is not publicly available, we took help from (and worked
with) the DroidSIFT authors to extract the feature vectors
for our app set. In using this particular feature construc-
tion approach, we use a different reference database (from
which the graph distances are computed) of graphs than
the original DroidSIFT work, and our application of ML for
malware detection is also different from DroidSIFT’s use of
the feature vectors to classify malware into families. Thus
our study in no way reflects the quality of the DroidSIFT’s
original results. Our study is only to investigate whether all
items in this unique type of features have good ‘discrimina-
tive’ power.

In particular, we created a dataset of 3,000 apps®, subsam-
pled from our main dataset. Among these 3K apps, one third
are malware, one third adware, and the remaining are be-
nign. Further, among them, 2,100 (i.e., 700 apps from each
class) were used for training, and 900 (i.e., 300 apps from
each class) were used for testing. As per our instruction,
the DroidSIFT authors built a reference graph database us-
ing the above training set and returned us a feature vector
for each app in our training set and test set. Each feature
in the feature vector generated by DroidSIFT represents a
graph distance of the candidate app from the reference graph
database. From the 3,000 apps, DroidSIFT was able to gen-
erate the feature vectors only for 1,524 apps (1,128 from
the training set and 396 from the test set). The remaining
apps failed as they either were generating excessively large
graphs (containing more than 100 nodes), taking too long
to compute the graph edit distance, being developed for un-
supported versions of Android, or could not be resolved to
extract DEX executables.

3Tt only had 3000 apps since we seeked help from the Droid-
SIFT authors to generate these features for us and they were
bound by computing resources to generate features for more
than a few thousand apps.
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3.3 Evaluation strategy

For all of our experiments, we employ cross-validation,
which is a standard technique for assessing how the results of
a statistical analysis will generalize to an independent data
set. Specifically, for a k-fold cross validation, we randomly
partition the original sample set into k equal sized subsam-
ples while one of them is retained as the testing set and the
remaining k - 1 subsamples are used as training data. The
cross validation process is then repeated k times, with each
of the k subsamples used exactly once as the test set, and the
final k£ results are then averaged to produce an estimation.
In particular, we use 5-fold cross-validation in our experi-
ments. Since every sample in the datset is used once during
evaluation, cross-validation can be used to avoid biased data
points. However, we observe that cross validation technique
was used by only a few of the recent ML-approaches [6, 20].

actual positive | actual negative

(malware app) | (benign app)
predicted | true positive false positive
positive (TP) (FP)
predicted | false negative true negative
negative (FN) (TN)

Table 1: Confusion matrix

TP
TPF-L—}EN

FP+TN
_TprP__
TP+FP

7

True positive rate =
False positive rate =
Precision =

Recall =

TP+FN

Table 2: Definition of metrics

In this research, we explore the applicability of the follow-
ing evaluation metrics for the ML results. The metrics are
defined using the standard confusion matrix (as in Table 1)
as illustrated in Table 2. (i) true positive rate (TPR): the
proportion of actual positives which are correctly identified
as such; (ii) false positive rate (FPR): the proportion of ac-
tual negatives which are falsely identified as positive; (iii)
precision: the fraction of returned positive results that are
really positive; (iv) recall: same as TPR; (v) receiver oper-
ating characteristic curve (ROC) and area under the curve
(auROC): ROC is a graphical plot that shows how TPR
varies with FPR when the discrimination threshold is var-
ied. The auROC represents measure of the area under the
ROC curve; the closer the value of auROC getting to 1, the
better the performance of the classifier. (vi) precision re-
call curve (PRC) and area under the curve (auPRC): PRC
of (positive class) is a graphical plot that shows how pre-
cision varies with recall, when the discrimination threshold
is varied; The auPRC measures the area under PRC curve.
Similar to auROC, the closer the value of auPRC getting to
1, the better the performance of the classifier.

TPR (same as recall), FPR, and precision are computed
at a certain discriminating threshold. One can obtain ROC
and PRC curves by moving the threshold, thus the auROC
and auPRC are more comprehensive metrics for a classi-
fier’s performance. Furthermore, many security researchers
and practitioners observed [16] that an intrusion detection
system is not practical unless we can limit the FPR within a



bound. So, they advocate for studying ‘ROC curve bounded
by a FPR limit (say )’ instead of the regular ROC curve.
As defined by prior researchers [15] auROC, represents ‘nor-
malized area under the ROC curve bounded by the [0, z]
interval on the FPR axis’. The normalization is done with
respect to the maximum possible area, i.e., z x 1 (as the max
TPR is 1). As noted by [15], auROC, enables the security
practitioner to assess the detection rate because of a nice
property: auROC, = b implies a TPR of b with a FPR < .

4. EXPERIMENTATION

We have introduced (in Section 2) the research questions
(RQs) which are to study the impact of the challenges that
are typically faced by an ML-approach for Android malware
detection. Recall that each RQ corresponds to an impact
factor (IF), such as evaluation metric, data-composition, etc.
To answer each RQ, we use our c-approach for two main
reasons. (i) Most of the existing ML-approaches’ implemen-
tations are not publically available; and (ii) Our in-house
approach allows us to reliably vary the setting (i.e., the IF)
on our experimental framework to measure the impact of the
corresponding factor. Furthermore, for some RQs we study
some aspect of a few existing ML-approaches.

The implementation of our three part experimental frame-
work begins with ground truth preparation. We use the
techniques discussed in Section 3.1 to collect our base dataset
from a variety of sources and partition it into malware, ad-
ware, and benign subsets. On a 48-core Ubuntu server,
our multi-thread python implementation of Algorithm 1 can
process about 1.5 million VirusTotal scan reports within 40
minutes. Then, to extract the features in the way described
in Section 3.2, we utilize a High Performance Computing
Cluster (HPCC) to individually examine and extract fea-
tures from each app in the dataset. While extracting a fea-
ture vector from an app is relatively cheap and fast (only a
few seconds), to do so for about one million apps is time-
consuming if done sequentially. The HPCC enables us to
scale to hundreds of cores and enables feature extractions
on millions of apps in just a few hours. Our experimental
framework is scalable and runs well on the HPCC, prov-
ing that our data-driven approach could handle the daily
throughput of a major app store like Google Play. Then,
we input the feature vectors extracted on the HPCC into
Weka and choose the classifier (e.g., k-NN). Note that Weka
is a commonly used machine learning software suite boast-
ing tens of algorithms and filters for both supervised and
unsupervised learning. Finally, we run the experiments on
Weka after selecting the corresponding evaluation metric(s).
The training and evaluation of the classifier is substantially
faster than feature extraction, and can be run in a matter
of hours when parallelized on a common desktop machine.

In each experiment, we vary certain parameters while keep-
ing the others constant. Unless otherwise stated, these are
the defaults: (a) metrics: TPR, FPR, and auPRC of the ma-
licious class, (b) malware/benign apps ratio in test data is
1:50, (c) data set size: 8.5K malware and 425K benign apps,
(d) ML-approach: c-approach, i.e., classifier being k-NN and
feature set having 471 features, as described in Section 3.2.
Note that we do not filter out adware from the malware set
in any experiment except for in RQ4, i.e., we allow adware
being mixed with malware in all experiments except RQ4.
Now we present the details of the experiments for each RQ.
We classify the RQs in three categories as discussed below.
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4.1 Impact of evaluation strategy

RQI: Is ROC the best metric to evaluate ML-based
malware detection approaches?

The most commonly used metric in existing literature in
the domain of Android malware detection is currently the
ROC curve [5, 9]. In this RQ we attempt to answer whether
there could be a better metric for comparing different ML
approaches especially for the domain of Android malware
detection, where the ratio of malware to benign apps in the
real-world may range from 1:100 and up [2].

If there is a large skew in input class dataset, the ROC
curve can present an overly optimistic view of a classifier’s
performance [10]. On the other hand, PRC can expose dif-
ferences between algorithms that are not apparent in ROC
space. Since the number of negative samples (benign apps)
usually significantly exceeds positive samples (malicious apps)
in a legitimate app store (Google Play), the number of false
positives is expected to be greatly smaller than true nega-
tives. Thus, according to the metric definition of FPR as
specified in Table 2, a large change in the number of false
positives can only lead to a small change in FPR which is
used in ROC analysis. However, since precision compares
false positives against true positives as defined in Table 2,
PRC will be able to capture the effect of the large number of
negative examples on the algorithm’s performance. There-
fore, the performances of two algorithms may appear similar
in ROC space, while in PRC space one may reflect a clear
advantage compared to another one. In addition, PRC can
reveal the effect of the base-rate fallacy [7] in which while
the overall percentages of benign apps incorrectly rejected is
low, the count is still orders of magnitude greater than the
count of those correctly rejected.

Experiment design. To demonstrate auPRC’s superior-
ity in imbalanced datasets, we look at two different datasets.
The 1:1 and 1:100 ratio datasets, one of which is very bal-
anced and the other one is very imbalanced. We note that
these two results are related to the experiments of RQ3 ex-
amining how ratio imbalance effects results.

1:1 1:100

TPR 96.1% | 96.2%
FPR 5.7% 5.8%
auROC 0.970 | 0.970
auROC0,0l 0.098 0.142
auROCvos 0.581 0.604
auROCp1 | 0.815 | 0.795
auPRC 0.964 | 0.456

Table 3: Comparing metrics at two mal. vs. ben. app ratios

Experiment results. We can see from Table 3 that
TPR, FPR, and auROC are nearly the same between the
two datasets, indicating no degradation due to different ma-
licious to benign app ratios. As advocated by prior re-
searchers [15, 16], we also investigate FPR-bounded ROC
curves. In our experiment, we have computed auROC, for
several values of FPR, x = 0.01,0.05,0.1 as illustrated in
Table 3. However, like the regular auROC, we see that the
value of auROC; remains more or less same when we change
the ratio of the malicious app set size and benign app set
size.
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Figure 1: ROC vs. PRC

However, as illustrated in Figure 1, the auPRC is drasti-
cally worse with the larger imbalanced dataset. Especially
in cases where the optimization and detection of malware is
of paramount importance, it is critical that a metric appro-
priately weighs detection and performance on the minority
class as significant. For these reasons, we find auPRC to be
a better metric for comparing results of different approaches
in ML-based Android malware detection.

4.2 TImpact of the input data

RQ2: Does having dated malware in training/test set
mislead performance?

The Genome Malware Project [23] for many years has been
used as a main source of malware for many ML-based works
[4, 5, 6,9, 21]. However, the Genome set, with malware from
2010-2012, has become a dated source of malware. This RQ
seeks to examine if using dated malware sources can lead to
misleading results, if used in conjunction with more modern
benign datasets as many approaches do.

To answer this RQ, we study the performance of the clas-
sifier over two cases: (a) the Genome set is used as the
positive class and (b) a subset of modern malware set from
our repository (as presented in Section 3.1) is used as the
positive class. In both cases, we use a subset of benign apps
from our Google Play dataset collected in October 2014.

Experiment design. We utilize a two-class classifier to
learn the differences between malicious and benign apps. In
Run 1, we use 1,260 Genome malware to represent a dated
malware set. For Run 2, we use 1,260 modern malware from
VirusShare and Arbor Networks sources. For both runs,
the benign set has 63K apps to establish a 1:50 ratio (of
malicious to benign apps).

Genome Malware | Modern Malware
TPR 98.0% 94.3%
FPR 1.8% 7.1%
auPRC 0.601 0.410

Table 4: Genome malware vs. modern malware

Experiment results. As shown in Table 4, we observe
that the Genome-based set yields substantially better clas-
sification performance when compared to the more mod-
ern malware. We note several possible confounding factors
that can affect experiments using the Genome apps along-
side more modern benign apps.

1.0
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(i) Changes in Android specifications: Android has quickly
evolved in the past 5 years bringing major changes to its
APIs, permissions, and intents that have long been used as
distinguishing features. Since the Genome dataset was re-
leased, Android has gone from API Level 11 to 21. Features
whose use has either evolved or devolved over time will look
discriminative between malware and benign apps in Run 1,
when in reality they have to do with time, not malicious-
ness. In a sense, in Run 1 the classifier learns to distinguish
2012 from 2014, not malicious from benign apps. Run 2 ver-
ifies this by using apps from the same timeframe and shows,
lacking the implicit age feature, that performance suffers.

(ii) Lack of diversity of malware in Genome: The Genome
dataset only includes around 20 unique malware families,
where modern malware are far newer and more diverse. The
over triple FPR and almost triple false negative rate (1-
TPR) of modern than Genome appears to indicate that the
diversity of modern malware makes it substantially more
difficult to detect and classify correctly.

We conclude that using the Genome data set should be
phased out from modern Android malware detection works
due to its ability to mislead performance of systems.

RQ3: Does classifier performance degrade as we ap-
proach real-world ratio of malware and benign apps?

Thankfully, the occurence of malware in the app stores is
fairly low. However, this imbalance in the amount of mal-
ware and benign apps in a store can contribute an interesting
factor in classifier performance. In this RQ we experiment
with how more realistic ratio imbalances affect classifier per-
formance. Peer works do not consider highly skewed ratios.
The highest skewed ratio between benign and malicious apps
in the papers we studied was around 1:22 [5] while many
others used less skewed ratio than a 1:10 [4, 6, 21].

Experiment design. We begin with a 1:1 ratio repre-
sented by 8.5K malicious and 8.5K benign apps. We then
add benign apps as necessary to achieve varying ratios up to
1:100. In particular, we experiment with ratios, such as 1:1,
1:5, 1:10, 1:20,1:50, and 1:100. We utilize undersampling to
ensure that both classes of sampling are weighted equally
when training the classifier.

1:1 1:5 1:10 1:20 1:50 1:100

TPR 96.1% | 95.8% | 96.1% | 96.0% | 96.1% | 96.2%
FPR 5.7% 5.9% 5.9% 5.8% 5.8% 5.8%
auPRC | 0.964 | 0.871 | 0.799 | 0.701 | 0.557 | 0.456

Table 5: Results for different malware to benign app ratios

Experiment results. We can see from Table 5 that
performance, in terms of auPRC substantially degrades as
ratio increases, although TPR and FPR are more or less
constant. We recall that TPR (same as recall) and FPR, and
precision are computed at a certain discriminating threshold.
One can obtain PRC curves by moving the threshold, thus
auPRC is a more comprehensive metric to show a classifier’s
performance.

RQA4: Does quality of ground truth affect performance?

Peer works generally do some form of ground truth prepar-
tion for an ML classifier. Some works [5] require that a
minimum of 20% of VirusTotal reports indicate the app is
malicious. Other works [21] hold stringent standards and



require that the reports return a matching malware fam-
ily to be used in their dataset. In this RQ we explore how
different policies regarding varying levels of certainty of ma-
liciousness affects performance, as well as discussion on the
most realistic ways to deal with ground truth preparation.

Experiment design. For both runs, the benign set is
750K benign apps. For Run 1, we randomly select 50K high
quality malware (defined in Section 3.1) as the positive class
to test against the benign apps. For Run 2, we randomly
select 50K low quality malware (defined in Section 3.1) as
the positive class and the same benign apps as the negative
set.

High quality malware | Low quality malware
TPR 97.8% 65.0%
FPR 5.1% 28.7%
auPRC 0.846 0.176

Table 6: High quality malware vs. low quality malware

Experiment results. We see from Table 6 that the
higher quality malware leads to substantially better per-
formance of the classifier. Note that in the above experi-
ments the tuning parameter is the number of ‘positive’ flags
from AV reports. Several reasons can explain the disparity
in performance. High quality malware are likely to exhibit
many traditional signs of malware, having certain permis-
sions, APIs, etc. These well-defined signs make it easier to
detect by AV products. These well-defined attributes also
make it perform well in our classifier, since they present an
easier problem to the ML algorithm. A ‘low quality’ mal-
ware can be representative of many different things. It could
simply be a false positive by an AV product or indeed be a
true positive but represent potentially newer and less easily
detectable malware, upon which only a few AV products are
able to detect. While it would yield better performance to
remove low quality malware, for all other RQs we leave low
quality malware in. This, then, represents a more realistic
base data set, one where the picture is not always black and
white and AVs aren’t always up to date. We recall that
if training and/or test dataset have mislabeled items, that
adversely affects the classifier’s performance results.

RQ5: Does presence of adware in the dataset affect the
performance?

Adware exists in an inevitable grey area between that of
malware and benignware. Different works have taken ap-
proaches to the placement of adware. Drebin [5] simply
drops the adware, while most include them in the malware
set. This RQ explores what is an appropriate way to handle
adware in evaluating classifier performance.

We report how much impact we see in detection rate when
we drop adware from malware set compared to the case when
we do not do so (i.e., we include adware in malware set).
Finally, we examine the problem from a three-class perspec-
tive, and run a 3-class classifier to learn each distinctly.

Experiment design. Run 1: 100K malware only (i.e.,
no adware) as positive set, and 100K benign apps as negative
set. Run 2: 100K malware and 100K adware combined as
the positive set, and 200K benign apps as negative set. Note
that we increase the benign set to keep a balance between the
two-classes. Run 3: a three-class classifier between benign,
adware, and malware, with 100K apps of each.

88

benign benign three
vs. vS. class

malware | malware + adware | classifier
TPR 79.6% 80.6% 76.2%
FPR 18.8% 15.7% 11.9%
auPRC 0.843 0.884 0.780

Table 7: Assigning adware to different categories

Experiment results. From Table 7, we observe that
when adware and malware are combined together, we see
the best performance. We note that the metrics for the
three-class classifier are actually the average of all three of
the classes specific metric (e.g., auPRC is the average of the
auPRC of malware, adware, and benign.) As performance
without adware in the mix (Run 1 vs. Run 2) degrades, we
hypothesize that adware in a sense is indeed very distinct
from benign, thus boosting the performance of the classifier
when it is included in malware. Furthermore, we can con-
clude that malware and adware are quite similar, as we see
the worst results when we attempt to distinguish between
all three in a three class classifier.

We know, in real world, people seek to separate adware
from malware, but our experiment shows that it will be chal-
lenging. Further research could seek the best features for
discriminating adware. In our opinion, simply dropping ad-
ware from the experiment dataset (and evaluating only on
malware and benign apps) is not recommended since in the
real world all three classes exist.

4.3 Impact of algorithm sophistication

RQ6: Are more features better?

We observe that different ML-approaches utilize different
number of features. While working out a ML-approach the
designer can be interested to investigate whether all of the
items in the feature set are informative, i.e., they are actu-
ally helping the classifier in discriminating the classes. It is
obvious that there is a downside of choosing features that
are not discriminative as they will increase the computation
complexity without delivering any benefit. In this RQ, we in-
vestigate whether we always get better classification perfor-
mance while using more features. To get working examples
for this study, we emulate two existing approaches’ feature
sets (Drebin and DroidSIFT), which provide two canonical
cases as explained in Section 3.2.

Experiment design. First experiment (with emulated
Drebin features). As discussed in Section 3.2, our emulated
Drebin feature set contains over 1 million features. We build
a condensed subset of features by removing those features
that are raw strings appearing in particular apps. In par-
ticular, we removed the ‘url’s, and ‘component name’s from
the total feature set. The reduced feature set contains only
2,246 features, and they correspond to semantic behaviors
(as defined by permissions, APIs, etc.) as opposed to an ar-
bitrary association, which is the case for ‘url’ or ‘component
name’ features. In this RQ, we evaluated the classifier with
the reduced set of features.

Specifically, we perform two runs by varying the feature
set. Run 1: full set of emulated Drebin’s features (more
than 1 million); Run 2: the reduced set of 2,246 features.



Second experiment (with API-dependency-graph-based fea-
tures). DroidSIFT uses a unique type of features that are
graph distance based where those graphs represent API de-
pendency. This unique type makes us interested to emulate
DroidSIFT features to study RQ6. However, we stress that
we did not work with the DroiSIFT paper’s original dataset
nor we emulate their entire approach. In no way, we claim
that our results reflect the original DroidSIFT approach’s
performance. We only emulated their feature vector design
(with the help of the DroidSIFT authors) and that too uses a
different dataset and a different reference database of graphs
as discussed in Section 3.2. To highlight the difference of the
emulated features and the original DroidSIFT features, we
refer to the emulated feature set as ‘API-dependency-graph-
based features’ from now on.

We recall that our final dataset had 1,524 apps and each
app is represented by a feature vector of length 1183 (which
is the number of unique graphs generated from the training
set of 1128 apps). Each element in the feature vector rep-
resents a normalized graph distance. In this RQ, we check
how informative these features are. First, we performed a
mutual information again analysis, and found that only 192
features provide positive information gain.

In the experiment, we ran the k-NN classifier on two com-
binations of the API-dependency-graph-based features. Run
1: use all of the 1,183 features; Run 2: use only the informa-
tive subset of 192 features (features with mutual information
greater than 0). This experiment investigates which combi-
nation produces better result.

Emulated-Drebin Emulated-Drebin
all features (1.37 million) 2,246 features
TPR 98.2% 98.2%
FPR 1.5% 0.1%
auPRC 0.911 0.982
auROC 0.990 0.994

Table 8: Results for emulated Drebin features

API-dependency-graph- | Most informative
based all features: 1183 192 features
TPR 90.6% 95.6%
FPR 18.8% 22.1%
auPRC 0.932 0.955
auROC 0.907 0.937

Table 9: Results for API-dependency-graph-based features

Experiment results. First experiment. As illustrated
in Table 8, removing all ‘url’ and ‘component names’ fea-
tures, the performance of the classifier actually increases
with auPRC for the malware class going up from 0.911 to
0.981. This indicates that emulated Drebin full feature set
has numerous non-informative features. Further, we have
found that many of these ‘url’ or ‘component name’ fea-
tures appear in only one or two apps and obviously do not
represent true discriminative characteristics.

Second experiment. The results in Table 9 show a simi-
lar trend with the ones in the first experiment. Namely, by
keeping only the top 192 most informative features, the ac-
curacy of the classifier increases by 2%, with auPRC going
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from 0.932 to 0.955. This would suggest that some of the
features in this dataset act as noise, misleading the classifier.

5. RELATED WORK

The research community has studied ML-approaches for
Android security vetting as well as application of ML for
the general field of computer security. Below we mention a
handful of such research works.

5.1 ML as applied for Android Security

Several ML-inspired solutions [5, 6, 9, 21] are to detect
malware apps. We stress that our main contributions in
this paper are the identification of challenges of applying ML
for Android malware detection while other works focus on
designing a specific ML-approach. We discuss them below.

Drebin [5] works with a massive feature set (more than
500K features) containing different types of manifest fea-
tures (permissions, etc.) and ‘code’ features (URLs, APIs
etc.) as discussed in Section 3.2.2. Yet, Drebin authors
demonstrated that the malware detection system is scalable,
and it can even run on a phone in order of seconds. Drebin’s
performance results (the reported TPR, FPR, and ROC) are
also very impressive.

DroidSIFT [21] is unique in designing features in terms of
distance among API dependency graphs. It builds the API
dependency graphs G for each app, and then constructs the
feature vector of the app. The features represent the simi-
larity of the graphs G with a reference database of graphs of
known benign apps and malware apps. Finally, the feature
vectors are used in anomaly or signature detection.

MAST [9] is a triage architecture whose goal is to spend
more resources on apps that have a higher probability of
being malicious, thereby reducing the average computation
overhead for app vetting. This system utilizes a statistical
method called Multiple Correspondence Analysis (MCA). It
uses permissions, intents and the presence of native code to
determine the probabilities of being malicious.

MUDFLOW [6] argues the pattern of sensitive informa-
tion flows in a malware is statistically different from those
in benign apps, which can be utilized for malware detection.
From an app, it extracts the flow paths through static anal-
ysis, and these paths are then mapped to a feature vector
that is used in a classifier.

Moreover, we are the first to study market-scale apps
(nearly 1 million benign apps and 250K problematic apps)
in evaluating a ML-approach while for existing works the
largest benign set had 120K apps [5] and the largest mal-
ware set contained 24K apps [6].

5.2 ML as applied for Computer Security in
general

There is a large body of work in the intersection of ML
and the general field of computer security. Sommer et al.
[16] thoroughly studied the challenges of applying ML in net-
work intrusion detection system (NIDS). They observed that
ML approaches face much harder challenges when we apply
them for anomaly detection in NIDS compared to ML’s ap-
plications in other domains, such as recommendation sys-
tems, image processing, etc.. They explained that the above
mainly stems from high price of false alarms in NIDS as
they waste (already overburdened) network operators’ valu-
able time. This was our motivation to study the metrics



related to bounded ROC curve for RQ1l. Another notable
work in the intersection of ML and computer security is [15].

6. CONCLUSION AND FUTURE WORK

In this paper, we attempted to make the research commu-
nity aware of common challenges faced by ML-approaches
for Android malware detection. We studied the impact of
these challenges on our experimentation framework by vary-
ing several parameters that correspond to the above chal-
lenges. Our study is expected to encourage the practice of
employing a better evaluation strategy and/or a better de-
sign of future ML-based Android malware detection systems.

In future work, we will extend the current study. As one
direction, we will study the impact of the choice of classifier
(e.g., SVM, k-NN, etc.) on the performance. Furthermore,
prior researchers [8, 19] showed that how an attacker might
exploit her knowledge (even partial) about the classifier to
evade the detection. For instance, knowledge on items, such
as the feature set, training dataset, and/or classification al-
gorithm [19] can help the attacker evade. Note that the RQs
of the current paper investigate influence of some of these
items, but we do not yet consider the attacker’s knowledge.
We will study the impact of attacker’s knowledge in future.
As an example, Drebin authors [5] have thought about pos-
sibility of mimicry / poisoning attack while Drebin uses hun-
dreds of thousands of features (including component names
or urls, which can be arbitrary strings). In RQ6, we have
observed that only a core subset of features in Drebin clas-
sifier actually influence the detection rate. Similarly, our
DroidSIFT experiment shows that only a tiny subset of fea-
tures actually influence the detection rate. We will study in
future whether an attacker can exploit the knowledge about
the reduced feature set. For instance, the adversary can first
search for those apps (from app markets), which the classifier
rates very much benign (with respect to the reduced feature
set). Then, the adversary can repackage one of these apps
with the malicious module and thus may increase her chance
of evading the classifier.
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