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Abstract. In previous work, we have proposed a compositional framework for
stating and automatically verifying complex conditional information flow poli-
cies using a relational Hoare logic. The framework allows developers and verifiers
to work directly with the source code using source-level code contracts. In this
work, we extend that approach so that the algorithm for verifying code compli-
ance to an information flow contract emits formal certificates of correctness that
are checked in the Coq proof assistant. This framework is implemented in the
context of SPARK – a subset of Ada that has been used in a number of industrial
contexts for implementing certified safety and security critical systems.

1 Introduction

Network and embedded security devices have complex information flow policies that
are crucial to fulfilling device requirements. We have previously explained [1, §1] how
devices (such as “separation kernels”) developed following the MILS (Multiple Inde-
pendent Levels of Security) architecture must be certified to very stringent criteria such
as Common Criteria EAL 6/7 and DCID 6/3, and that many previous information-flow
analyses (based on type systems) are too weak to specify these systems; the notion of
conditional information flow is needed. We have also explained [2] that in these real ap-
plications, one must be able to trace information flow through individual array elements,
rather than “contaminating” the entire array whenever an assignment is done.

SPARK (a safety-critical subset of Ada) is being used by various organizations, in-
cluding Rockwell Collins1 and the US National Security Agency (NSA) [3], to engineer
information assurance systems including cryptographic controllers, network guards,
and key management systems. To guarantee analyzability and conformance to embed-
ded system resource bounds, SPARK does not include pointers and heap-based data.
Thus, SPARK programs use arrays and for-loops to implement complex data structures.
SPARK provides automatically checked procedure annotations that specify information
flows (dependences) between procedure inputs and outputs. In the certification process,
these annotations play a key role in justifying conformance to information flow and

1 See the 2006 press release at http://212.113.201.96/sparkada/pdfs/
praxis rockwell final pr.pdf
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separation policies relevant to MILS development; however, the standard SPARK an-
notation language is too weak to express the flow policies needed to verify/certify many
real embedded information assurance applications.

Due to the lack of precision in SPARK and other conventional language-based se-
curity frameworks, policy adherence arguments are often reduced to informal claims
substantiated by manual inspections that are time-consuming, tedious, and error-prone.
Some past certification efforts have created models of software code in theorem provers
and proved that the models of code comply with security policies. While this strategy
can provide high degrees of confidence and support very precise policy declarations,
it has the disadvantages of (a) leaving “trust gaps” between source code and models
(their correspondence has in past efforts been only manually verified by inspection), (b)
requiring intensive manual efforts, and (c) inhibiting developers from proceeding with
information flow specification and verification during the development process.

In our previous work [2,1] we extended SPARK’s procedure annotations to condi-
tional information flow and fine-grained treatment of structured data, necessary for the
automatic analysis and verification of many programs, and we developed a composi-
tional framework for stating and automatically verifying complex array-oriented and
conditional information flow policies using a relational Hoare logic. Although our Se-
cure Information Flow Logic (SIFL) is language-neutral, we have chosen to cast our
work as an enhancement to the SPARK information flow framework. Indeed, this work
has been inspired by challenge problems provided by our industrial collaborators at
Rockwell Collins who are using SPARK on several projects.

Here we extend our framework with new functionality to generate machine-
checkable proofs of the information-flow properties that it derives. Our framework
is much more automated than tactical theorem-proving in a proof assistant. In our
framework, engineers work directly with the source code using code contracts to spec-
ify/check with greater precision than in conventional language-based information flow
frameworks. We believe that most units (e.g., procedures) of real embedded applications
can be handled directly by our analysis—and those units that cannot may smoothly be
handed off to verification in a proof assistant; the compositional nature of our system
will eventually allow the whole system to be checked end-to-end in the proof assistant.

Contributions: (a 50+ pages technical report describing the details of the approach, as
well as Coq proofs for evidence soundness, is available at [4].)

– We enhance our previously developed precondition-generation algorithm for SIFL
assertions to emit evidence that program units conform to their (conditional) infor-
mation flow contracts. This evidence can be viewed as an application of rules of a
relational logic for information flow that encodes the algorithm’s reasoning steps.

– We provide an implementation of the evidence-emitting precondition generation
algorithm for SPARK.

– We encode the derived logic in Coq, and prove it sound with respect to an operational
semantics for a core subset of SPARK. We thus have a foundational machine-checked
proof that whenever our evidence-checker accepts evidence about a program, then
that program really does conform to the given information flow policy.

– We evaluate the framework on a collection of methods from embedded applications,
including applications from industrial research projects.
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Fig. 1. Structure of Information Flow Evidence Generation and Checking

2 Background

SPARK is a safety critical subset of Ada developed by Altran Praxis and supported by
AdaCore. SPARK provides (a) an annotation language for writing functional as well
as information-flow software contracts, and (b) automated static analyses and semi-
automated proof assistants for proving absence of run-time exceptions, and confor-
mance of code to contracts. SPARK has been used to build a number of high-assurance
systems; Altran Praxis is currently using it to implement the next generation of the UK
air traffic control system. We are using SPARK due to our strong collaborative ties with
Rockwell Collins, who uses SPARK to develop safety and security critical components
of a number of embedded systems.

Figure 1 illustrates the structure of our SIFL contract checking and evidence gen-
eration framework. An Eclipse-based integrated development environment allows pro-
grammers to develop information-assurance applications in SPARK. Our logic-based
approach allows us to extend the SPARK information-flow contract language to include
support for conditional information flow and quantified flow policies that describe flows
through individual components of arrays. Behind the scenes, the enhanced SPARK infor-
mation flow contracts are represented using relational agreement assertions (explained
below). Our tool framework includes a precondition generation algorithm for agreement
assertions that allows us to infer SIFL contracts or check user-supplied contracts; in the
latter mode, preconditions are inferred from postconditions, and then the tool checks
that the user-supplied preconditions imply the inferred preconditions. The precondition
generation algorithm uses a collection of SMT solvers via the Sireum Topi interface
(www.sireum.org). As the precondition generation executes, it builds evidence, in
the form of a Coq data structure, that relates postconditions to generated preconditions.
This language of evidence is a relational Hoare logic derived from the basic reason-
ing steps in the algorithm. Coq type checking acts as an “evidence checker” confirming
that the evidence emitted by the algorithm is indeed well-formed. The Coq evidence
representation is proved sound in Coq wrt. an operational semantics for an imperative
language representing core features of SPARK. Thus, given a SPARK program and a

www.sireum.org
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procedure MACHINE STEP
−− INFORMATION FLOW CONTRACT ( F igur e 3)
i s D 0 , D 1 : CHARACTER;
begin

i f IN 0 RDY and not OUT 1 RDY then
D 0 := IN 0 DAT ; IN 0 RDY := FALSE ;
OUT 1 DAT := D 0 ; OUT 1 RDY := TRUE;

end i f ;
i f IN 1 RDY and not OUT 0 RDY then

D 1 := IN 1 DAT ; IN 1 RDY := FALSE ;
OUT 0 DAT := D 1 ; OUT 0 RDY := TRUE;

end i f ;
end MACHINE STEP ;

Fig. 2. Simple MLS Guard - mailbox mediates communication between partitions

SIFL contract, if the contract checking algorithm produces evidence that type checks in
Coq, we have a machine-checked proof that the program’s behavior (as defined by the
operational semantics) conforms to the information-flow contract.

Observe that the precondition generator is not part of the trusted code base and hence
in principle might fail to produce well-typed evidence, but we are exploring (cf. the end
of Sect. 4) an implementation of the precondition generator inside Coq. Once verified,
this Gallina implementation cannot fail to produce valid evidence.

Figure 2 illustrates the conceptual information flows in a fragment of a simplistic
MLS (Multiple Levels of Security) component, described in our earlier work [1]. Rock-
well Collins engineers constructed this example to illustrate, to NSA and industry rep-
resentatives, the specification and verification challenges facing the developers of MLS
software. The “Mailbox” component in the center of the diagram mediates communi-
cation between two client processes – each running on its own partition in the separa-
tion kernel. Client 0 writes data to communicate in the memory segment Input 0 that
is shared between Client 0 and the mailbox, then it sets the Input 0 Ready flag. The
mailbox process polls its ready flags; when it finds that, e.g., Input 0 Ready is set and
Output 1 Ready is cleared (indicating that Client 1 has already consumed data deposited
in the Output 1 slot in a previous communication), then it copies the data from Input 0
to Output 1 and clears Input 0 Ready and sets Output 1 Ready. The communication from
Client 1 to Client 0 follows a symmetric set of steps. The actions to be taken in each
execution frame are encoded in SPARK by the MACHINE STEP procedure of Fig. 2.

While upper levels of the MILS architecture require reasoning about lattices of se-
curity levels (e.g., unclassified, secret, top secret), the policies of infrastructure compo-
nents such as separation kernels and guard applications usually focus on data separation
policies (reasoning about flows between components of program state), and we restrict
ourselves to such reasoning in this paper.

Figure 3(a) displays a fragment of an information flow contract for the mailbox ex-
ample written in our contract language that enhances the original SPARK contract lan-
guage with the ability to specify conditional information flows. This specification states
from which input values (and under which conditions) the final values of OUT 0 DAT

and OUT 1 DAT are derived. For example, OUT 0 DAT always derives from IN 1 RDY

and OUT 0 RDY because these ”guarding variables” determine whether or not the body
of the conditional that assigns to OUT 0 DAT is executed, i.e., OUT 0 DAT is control de-
pendent on IN 1 RDY and OUT 0 RDY. In addition, the final value of OUT 0 DAT depends
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−−# d e r i v e s
−−# OUT 0 DAT from
−−# IN 1 DAT when
−−# ( IN 1 RDY and n o t OUT 0 RDY ) ,
−−# OUT 0 DAT when
−−# ( n o t IN 1 RDY or OUT 0 RDY ) ,
−−# OUT 0 RDY , IN 1 RDY &
−−# OUT 1 DAT from
−−# IN 0 DAT when
−−# ( IN 0 RDY and n o t OUT 1 RDY ) ,
−−# OUT 1 DAT when
−−# ( n o t IN 0 RDY or OUT 1 RDY ) ,
−−# OUT 1 RDY , IN 0 RDY

(a)

{IN 1 RDY ∧ ¬OUT 0 RDY ⇒ IN 1 DAT�,
¬IN 1 RDY ∨ OUT 0 RDY ⇒ OUT 0 DAT�,
IN 1 RDY�, OUT 0 RDY�}

1. if IN 1 RDY and not OUT 0 RDY then
{IN 1 DAT�}

2. DATA 1 := IN 1 DAT;
{DATA 1�}

3. IN 1 RDY := false;
{DATA 1�}

4. OUT 0 DAT := DATA 1;
{OUT 0 DAT�}

5. OUT 0 RDY := true;
{OUT 0 DAT�}

6. end if ;
{OUT 0 DAT�}

(b)

Fig. 3. (a) Fragment of conditional information flow contract. (b) Corresponding derivation with
SIFL assertions.

on the initial value of IN 1 DAT when the flag IN 1 RDY is set and the flag OUT 0 RDY

is cleared; otherwise, it depends on the initial value of OUT 0 DAT.
The derives clauses in SPARK, like most formal specification mechanisms for in-

formation flow, are unconditional (e.g., they do not include the when clauses illustrated
in Figure 3). Thus, they cannot distinguish the flag variables as guards nor phrase the
conditions under which the guards allow information to pass or be blocked. This means
that guarding logic, which is central to many security applications including those de-
veloped at Rockwell Collins, is completely absent from the checkable specifications
in SPARK. In general, the lack of ability to express conditional information flow not
only inhibits automatic verification of guarding logic specifications, but also results in
imprecision which cascades and builds throughout the specifications in the application.

To capture conditional information flow as well as other forms of information that
cannot be specified in SPARK, we have been building [1,2] on a reasoning framework
based on conditional agreement assertions, also called 2-assertions, originally intro-
duced by Amtoft and Banerjee [5]. These SIFL assertions are of the form φ ⇒ E�,
where φ is a boolean expression and E is any kind of expression (to be defined in the
next section), which is satisfied by a pair of stores if either at least one of them does not
satisfy φ, or they agree on the value of E:

Definition 1. s1&s2 |= φ⇒ E� iff [[E]]s1 = [[E]]s2 whenever s1 |= φ and s2 |= φ.

We use θ ∈ twoAssn to range over 2-assertions. For θ = (φ ⇒ E�), we call φ
the antecedent of θ and write φ = ant(θ), and we call E the consequent of θ and
write E = con(θ). We use Θ ∈ P(twoAssn) to range over sets of 2-assertions, with
conjunction implicit. Thus, s&s1 |= Θ iff ∀θ ∈ Θ : s&s1 |= θ. We often write E� for
true⇒ E�, and often write θ for the singleton set {θ}.

Fig. 3(b) illustrates a simple derivation using SIFL assertions that answers the ques-
tion: what is the source of information flowing into variable OUT 0 DAT? The natural
way to read the derivation is from the bottom up (since our algorithm works “back-
wards”). Thus, for OUT 0 DAT� to hold after execution of P , we must have DATA 1�

before line 4 (since data flows from DATA 1 to OUT 0 DAT), IN 1 DAT� before line
2 (since data flows from IN 1 DAT to DATA 1), and before line 1 IN 1 RDY� and
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OUT 0 RDY� (since they control which branch of the condition is taken), along with
conditional assertions. The precondition shows, just as we would expect, that the value
of OUT 0 DAT depends unconditionally on IN 1 RDY and OUT 0 RDY, and conditionally
on IN 1 DAT and OUT 0 DAT.

3 Evidence Representations

One of our primary goals in this paper is to design evidence terms η whose types cor-
respond to triples: if we can establish that η has type {Θ} C {Θ′} then the com-
mand C has information flow property given by precondition Θ and postcondition Θ′

where both are sets of 2-assertions. Intuitively, evidence represents the primary reason-
ing steps taken in the precondition generation algorithm when constructing a derivation
such as the one displayed in Fig. 3(b). We shall need several auxiliary kinds of evidence,
described later but summarized below:

� η : {Θ} C {Θ′} η shows C has information flow pre/post-condition Θ/Θ′

� ν : φ
C⇐ φ′ ν shows φ is NPC for φ′ wrt. C

� ι : φ ⇒1 φ′ ι shows φ logically implies φ′

� τ : Θ ⇒2 Θ′ τ shows the 2-assertions in Θ logically imply Θ′

� μ : C mods only X μ shows C modifies at most X

3.1 Preliminaries

We shall now describe our language, sufficient to represent the primary features of
SPARK. We shall consider only one-dimensional2 arrays, and model such an array as
a total mapping from integers into integers that is zero except for a finite number of
places; we do thus not try to model array bounds which is an orthogonal issue and we
assume that SPARK development tools have been applied to prove that there are no
index range nor arithmetic overflow violations.

Basic Syntax. Commands C are given by the abstract syntax

C ::= skip | C ;C | assert(B) | x := A | h := H | if B then C else C
| while B do C | for q ← 1 to m do C

In for q ← 1 to m do C we require q and m to be different identifiers, neither mod-
ified by C. We use x (and y, z) to range over scalar identifiers, h to range over array
identifiers, and z, w to range over either kind of identifier; we use A to range over arith-
metic expressions, B and φ to range over boolean expressions which are also called
1-assertions, H to range over array expressions, and E to range over any kind of ex-
pression. Those are given by the syntax

A ::= c | x | A opA | H [A]
B ::= A bop A | true | false | B ∧B | B ∨B | ¬B
H ::= h | Z | H{A : A}

2 Multi-dimensional arrays are supported in the complete SPARK language, but they are not yet
supported in our theory nor in our tool implementation.
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where c ranges over constants, op ranges over binary arithmetic operators, bop ranges
over binary comparison operators, and Z denotes the array which is zero everywhere.
Note that an array identifier can be assigned an arbitrary array expression but we will
typically only do a one-place update: we use the standard notation h[A0] := A as a
shorthand for h := h{A0 : A}.

Semantics. A value is just an integer in Int. Thus a store s is a (partial) mapping from
scalar identifiers into values, and from array identifiers into total functions in Int→ Int
where we shall use a to range over members of that function space. Then [[A]]s denotes
the value resulting from evaluating A in store s, [[H ]]s denotes the function resulting
from evaluating H in store s, and [[B]]s denotes the boolean resulting from evaluating B
in store s. We we say that s satisfies φ, written s |= φ, iff [[φ]]s = True. Below, we shall
list the semantic clauses that deal with arrays (the other clauses are straightforward):

[[H [A]]]s = [[H ]]s([[A]]s) [[Z]]s = λn.0

[[H{A0 : A}]]s = [[[H ]]s | [[A0]]s �→ [[A]]s]

We write s [[C]] s′ if the command C transforms the store s into store s′. For example,
s [[h := H ]] s′ iff for some a we have a = [[H ]]s and s′ = [s | h �→a].

Given C and s, there exists at most one s′ such that s [[C]] s′ holds; if C is a while
loop that loops on s or an assert command that fails then no such s′ will exist.

In for loops, we allow zero iterations and let the final value of the counter q be one
above the bound; then one can prove that a for loop can be expressed as a while loop:
for all s and s′, s [[for q ← 1 to m do C]] s′ iff s [[q := 1 ;Cw]] s

′ where Cw is given
by while q ≤m do (C ; q := q + 1).

To analyze for loops, we could thus rely on an analysis for while loops, but we
shall present (Sect. 3.6) a specialized analysis of for loops that often gives more precise
information than analyzing the equivalent while loop would have done.

3.2 Evidence

We shall provide rules, numbered below from (1) to (12), for inferring judgements of
the form � η : {Θ} C {Θ′}. Each rule corresponds to an evidence construct and is
designed so as to enable the following soundness property:

Theorem 2. Assume that � η : {Θ} C {Θ′}. Then |= {Θ} C {Θ′}.
Here |= {Θ} C {Θ′} denotes the desired semantic soundness result: if s1&s2 |= Θ,
and si [[C]] s′i for i = 1, 2, then s′1&s′2 |= Θ′. Also, evidence has unique type: if
� η : {Θi} Ci {Θ′

i} for i = 1, 2 then Θ1 = Θ2, C1 = C2, and Θ′
1 = Θ′

2.

Syntax-Directed Evidence. For each syntactic construct there is a corresponding piece
of evidence. For the most basic constructs, the inference rules are listed in Fig. 4. (For
space reasons, we omit the evidence for while loops, and we postpone for loops un-
til Sect. 3.6.) We let add∧B(Θ) denote the result of conjoining B to the antecedent of
each assertion in Θ: add∧B(Θ) = {add∧B(θ) | θ ∈ Θ} where add∧B((φ ⇒ E�)) =
(φ ∧B)⇒ E�.
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� SkipE(Θ) : {Θ} skip {Θ} (1)

� η1 : {Θ1} C1 {Θ} � η2 : {Θ} C2 {Θ2}
� SeqE(η1, η2) : {Θ1} C1 ;C2 {Θ2} (2)

� AssignE(Θ, x,A) : {Θ[A/x]} x := A {Θ} (3)

� HAssignE(Θ, h,H) : {Θ[H/h]} h := H {Θ} (4)

� AssertE(Θ,B) : {add∧B(Θ)} assert(B) {Θ} (5)

Fig. 4. Simple rules for syntax-directed evidence

Before presenting the rule for conditionals, we need to introduce the notion of “nec-
essary precondition” (NPC). We say that φ is a NPC for φ′ wrt. C if whenever s [[C]] s′

and s′ |= φ′ then s |= φ. It is easy to see that the set of NPCs for given C and φ′ forms
a Moore family (closed under arbitrary conjunction) and hence there exists a smallest
(strongest) NPC, which is equal to wp(C, φ′) with wp denoting “weakest precondition”
(satisfied by a store s if there exists s′ with s [[C]] s′ and s′ |= φ′). It may be infeasible
to compute wp(C, φ′) exactly but then any weaker assertion (and trivially true) can be
used as NPC. We use ν to range over evidence for NPC, described in Sect. 3.3.

The general rule for a conditional C = if B then C1 else C2 is

Θ = {φ⇒ E�} � ηi : {Θi} Ci {Θ} (i = 1, 2) � ν : φ0
C⇐ φ

� CondE(η1, η2, ν, B) : {add∧B(Θ1) ∪ add∧¬B(Θ2) ∪ {φ0 ⇒ B�}} C {Θ} (6)

which demands the postcondition to be a singleton; if not, we decompose it and then
recombine using the UnionE evidence construct (9). The assertion φ0 ⇒ B� occurring
in the precondition expresses that if two runs must agree on the consequent E then they
must also agree on the test B; this may be too restrictive if E is not modified by either
branch in which case we can instead use the ConseqNotModE evidence construct (11).

We now look back at the derivation in Fig. 3(b). The analysis of the command in line
4 was done using rule (3), with x = OUT 0 DAT and A = DATA 1 and Θ = OUT 0 DAT�,
giving the precondition Θ[A/x] = DATA 1�. The analysis of the conditional in line 1
was done using rule (6), with B = (IN 1 RDY ∧ ¬OUT 0 RDY) and using evidence η1 for
the analysis of C1 (the lines 2–5) and evidence η2 for the analysis of C2 (skip), both
with postcondition Θ = OUT 0 DAT�. From Θ1 = IN 1 DAT� and Θ2 = OUT 0 DAT�, and
from true being a NPC for true, we get the precondition

Θ0 = { (true ∧ (IN 1 RDY ∧ ¬OUT 0 RDY))⇒ IN 1 DAT�,
(true ∧ ¬(IN 1 RDY ∧ ¬OUT 0 RDY))⇒ OUT 0 DAT�,
true⇒ (IN 1 RDY ∧ ¬OUT 0 RDY)�}

Non-Syntax Directed Evidence. Some additional evidence constructs are given by the
inference rules listed in Fig. 5 which we shall now explain and motivate.

The rules (7,8) allow us to strengthen the precondition or weaken the postcondition;
here τ is evidence (described in Sect. 3.3) for 2-implication: if � τ : Θ ⇒2 Θ′ then
Θ logically implies Θ′ (that is, for all stores s1, s2, if s1&s2 |= Θ then s1&s2 |= Θ′).
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� η : {Θ′′} C {Θ′} � τ : Θ ⇒2 Θ′′

� PreImplyE(τ, η) : {Θ} C {Θ′} (7)

� η : {Θ} C {Θ′′} � τ : Θ′′ ⇒2 Θ′

� PostImplyE(η, τ ) : {Θ} C {Θ′} (8)

� η1 : {Θ1} C {Θ′
1} � η2 : {Θ2} C {Θ′

2}
� UnionE(η1, η2) : {Θ1 ∪Θ2} C {Θ′

1 ∪Θ′
2}

(9)

� μ : C mods only X fv(Θ) ∩X = ∅
� NotModE(μ,Θ) : {Θ} C {Θ} (10)

� μ : C mods only X � ν : φ
C⇐ φ′ fv(E) ∩X = ∅

� ConseqNotModE(μ, ν,E) : {φ ⇒ E�} C {φ′ ⇒ E�} (11)

� η : {Θ} C {Θ′} � ν : φ
C⇐ φ′

� AntecStrongerE(η, ν) : {add∧φ(Θ)} C {add∧φ′(Θ′)} (12)

Fig. 5. Rules for non-syntax-directed evidence

Two derivations may be combined using (9) which can trivially be generalized to an
evidence construct combining an arbitrary number of elements: UnionE(η1 . . . ηn).

The rule (10) allows a simple treatment of 2-assertions when no identifier is modi-
fied; it uses evidence μ for not-modification: if � μ : C mods only X then all identi-
fiers3 possibly modified by C are included in X . We shall not represent such evidence
explicitly, since not-modification is a syntactic property which can be checked easily
by a simple Gallina function in Coq. Again looking back at the derivation in Fig. 3(b),
we observe that line 5 could have been analyzed using rule (3) but can also be ana-
lyzed using rule (10) which is particularly powerful if applied to a whole block of code.
For example, for the program in Figure 2, the precondition (shown in Figure 3) of the
second conditional does not contain any identifiers that are modified by the first condi-
tional, and hence by a single application of (10) can be shown to be also the precondition
of the whole program.

Another rule (11) addresses the more general case where antecedents, but not con-
sequents, may be modified. We then need to ensure that whenever two post-states are
required to agree on the consequent, also the two pre-states are required to agree on
the consequent. This is expressed using the notion of NPC, which is also used in (12)
to allow us to make pre-and postconditions “more conditional”, by strengthening the
antecedents.

3.3 Auxiliary Evidence

Evidence for 2-Implication. In order to justify the simplication of assertions, or showing
that a user-supplied precondition is correct in that it implies the precondition generated

3 If C modifies just one entry of h then h has to be included in X . This may seem very imprecise,
but we shall present (in Sect. 3.6) an analysis that in many cases does allow us to get precise
information about how individual array elements are affected by for loops.
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Θ ⊇ Θ0

� Superset2I(Θ,Θ0) : Θ ⇒2 Θ0
(13)

for all φ ⇒ E� ∈ Θ, there exists no s with s |= φ

� Vacuous2I(Θ) : ∅ ⇒2 Θ
(14)

fv(E) = ∅
� Const2I(E, φ) : ∅ ⇒2 (φ ⇒ E�)

(15)

� τ1 : Θ1 ⇒2 Θ′
1 � τ2 : Θ2 ⇒2 Θ′

2

� Union2I(τ1, τ2) : Θ1 ∪Θ2 ⇒2 Θ′
1 ∪Θ′

2

(16)

� τ1 : Θ1 ⇒2 Θ′
1 � τ2 : Θ2 ⇒2 Θ′ Θ = (Θ2 \Θ′

1) ∪ Θ1

� Trans2I(τ1, τ2) : Θ ⇒2 Θ′ (17)

� ι : φ ⇒1 φ′

� Contravar2I(ι, E) : {φ′ ⇒ E�} ⇒2 {φ ⇒ E�} (18)

E is of the form E1 op E2 or E1 bopE2 or E1 ∧ E2 or E1 ∨ E2 or ¬E1

� BinOp2I(E, φ) : {φ ⇒ E1�, φ ⇒ E2�} ⇒2 {φ ⇒ E�} (19)

Fig. 6. Rules for 2-implication evidence

by our inference algorithm, we need evidence that a given assertion set logically implies
another assertion set. Such evidence can be built using a number of constructs (more
might be added) whose inference rules are listed in Fig. 6.

Here (13) says that any set of 2-assertions logically implies a smaller set, while (14)
allows us to discard (replace by the empty set) 2-assertions that are vacuously true, and
(15) allows us to discard 2-assertions whose consequent are constants.

Derivations can be combined “horizontally” by (16) which easily can be generalized
to take an arbitrary number of arguments, and “vertically” by (17) which as a special
case (when Θ′

1 = Θ2) has the “standard” transitivity rule.
The rule (18) allows us to lift simplications on antecedents to simplifications on 2-

assertions, and expresses that 2-implication is contravariant in the antecedent; here ι
ranges over evidence (described later) for logical implication: if � ι : φ ⇒1 φ′ then
φ logically implies φ′ (that is, whenever s |= φ then also s |= φ′). For example, for the
precondition Θ0 computed above, one can easily verify that

true ∧ (IN 1 RDY ∧ ¬OUT 0 RDY)⇒ IN 1 RDY ∧ ¬OUT 0 RDY

true ∧ ¬(IN 1 RDY ∧ ¬OUT 0 RDY)⇒ ¬(IN 1 RDY ∧ ¬OUT 0 RDY)

and hence rule (18), together with rule (16), allows us to simplify Θ0 to

Θ′
0 = { (IN 1 RDY ∧ ¬OUT 0 RDY)⇒ IN 1 DAT�,¬(IN 1 RDY ∧ ¬OUT 0 RDY)⇒ OUT 0 DAT�,

(IN 1 RDY ∧ ¬OUT 0 RDY)�}.
Complex consequents can be decomposed using (19). For example, we can split the last
consequent of Θ′

0 to reach the final precondition of the code segment:

Θ′′
0 = { (IN 1 RDY ∧ ¬OUT 0 RDY)⇒ IN 1 DAT�,¬(IN 1 RDY ∧ ¬OUT 0 RDY)⇒ OUT 0 DAT�,

IN 1 RDY�, OUT 0 RDY�}.



A Certificate Infrastructure for Machine-Checked Proofs 379

Evidence for Necessary Precondition. Recall that we need, for the rules (6) and (11) and

(12), evidence ν such that if � ν : φ
C⇐ φ′ then whenever s [[C]] s′ and s′ |= φ′ then

also s |= φ. To build such evidence, we use one construct for each language construct,
with one extra to make a shortcut when the command does not modify the 1-assertion.
Two typical rules are listed below:

� ν1 : φ1
C1⇐ φ � ν2 : φ2

C2⇐ φ

� CondNPC(ν1, ν2, B) : (φ1 ∧B) ∨ (φ2 ∧ ¬B)
if B then C1 else C2⇐ φ

(20)

� ν : φ0
C⇐ φ � ι0 : φ0 ∧B ⇒1 φ � ι1 : φ′ ∧ ¬B ⇒1 φ

� WhileNPC(ν, ι0, ι1) : φ
while B do C⇐ φ′

(21)

Evidence for Logical Implication. We have two kinds of evidence:
1. rules that resemble axiomatization of propositional logic;
2. the evidence CheckLI(φ, φ′) which says that “a decision procedure has verified that

φ logically implies φ′”.

3.4 Manipulating 2-Assertions

It is often useful to transform a set of 2-assertions into a set which is “simpler” and
which satisfies certain properties; for example, to analyze a while loop (or a method
call), all (modified) consequents in the postcondition must be identifiers. Ideally, we
would like the result to be equivalent to the original (like Θ′

0 to Θ0 in the previous
example), but often it will be strictly stronger (as is Θ′′

0 when (E1 ∧ ¬E2)� is decom-
posed into E1� and E2�). Hence4 our overall approach does in general not calculate
the weakest precondition.

We have written an algorithm that transforms a set of 2-assertions Θ′ into a more
manageable form, as may be required by the command C for which Θ′ is the post-
condition, while producing evidence that the result is at least as strong as the original.
The algorithm as input also takes a set X , to be thought of as the identifiers that are
modified by C. The algorithm returns τ , and also Θu (assertions whose consequents
are unmodified) and Θn, such that � τ : Θn ∪Θu ⇒2 Θ′ and

– all array expressions inside Θn and Θu are identifiers; thus there are no occurrences
of Z or H{A0 : A} which may be introduced by rule (4) but hamper readability;

– all assertions in Θn are of the form φ ⇒ w� or of the form φ ⇒ h[A]�, as is
required if C is a while or for loop;

– if φ⇒ E� ∈ Θu then fv(E) ∩X = ∅;
– if φ⇒ h[A]� ∈ Θn then fv(A) ∩X = ∅;
– if φ1 ⇒ E� ∈ Θn and φ2 ⇒ E� ∈ Θn then φ1 = φ2.

3.5 Generating Evidence

For any command and postcondition, it is possible to compute a precondition, together
with evidence that the resulting triple is indeed semantically sound. To help with that,

4 Another reason is the approximation needed to efficiently handle loops.
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we need an algorithm NpcEvdGen generating evidence for necessary precondition.
For the nonlooping constructs, such an algorithm is straightforward to write, but for a
while loop a precise analysis involves guessing an invariant; we expect that we might
be able to use some of the emerging tools for finding loop invariants even though our
perspective is dual.

We shall first present a nondeterministic algorithm EvdGen such that for all com-
mands C (without while and for) and postconditions Θ, a call EvdGen(C,Θ) re-
turns evidence η such that � η : {Θ0} C {Θ} for some Θ0. Below we list the possible
actions of EvdGen, the applicability of which depend on the form of C and/or Θ.

Decompose Postcondition. The enabling condition is that Θ has at least two elements.
Let Θ′

1, Θ
′
2 be nonempty disjoint sets such that Θ = Θ′

1 ∪ Θ′
2. For each i ∈ {1..2},

recursively call EvdGen(C,Θ′
i) to produce ηi such that � ηi : {Θi} C {Θ′

i} for
some Θi. Define η = UnionE(η1, η2); we thus have � η : {Θ1 ∪Θ2} C {Θ}.

Push Through Postcondition. The enabling condition is that fv(Θ)∩X = ∅where X is
such that � μ : C mods only X for some μ. Then we can define η = NotModE(μ,Θ)
and achieve � η : {Θ} C {Θ}.

Push Through Consequent of Postcondition. The enabling condition is that Θ is a sin-
gleton {φ′ ⇒ E�}, and that fv(E) ∩X = ∅ with X such that � μ : C mods only X

for some μ. Let ν = NpcEvdGen(C, φ′). There thus exists φ with � ν : φ
C⇐ φ′.

Now define η = ConseqNotModE(μ, ν, E) and get � η : {φ⇒ E�} C {Θ}.

Syntax-Directed Actions. Two typical cases are as follows:
If C = x := A then EvdGen(C,Θ) returns AssignE(Θ, x,A).
If C = if B then C1 else C2, and Θ is a singleton {φ′ ⇒ E�}, we for each i ∈

{1, 2} recursively call EvdGen(Ci, Θ) to produce ηi such that � ηi : {Θi} Ci {Θ}
for some Θi, and call NpcEvdGen(C, φ′) to compute ν such that for some φ we have

� ν : φ
C⇐ φ′. We then return η = CondE(η1, η2, ν, B) which by the typing rules

satisfies the desired � η : {Θ0} C {Θ} for some Θ0.

Properties of EvdGen. The precondition Θ0 for an assignment statement x := A
depends only on the postcondition Θ, but not on the kind of evidence that was chosen;
we will always have Θ0 = Θ[A/x]. However, we do not have a similar result for
conditionals C = if B then C1 else C2: for example, if E is not modified by C then
EvdGen(C,Θ) may either produce evidence of the form CondE(η1, η2, ν, B) whose
type has a precondition containing an assertion with B as consequent, or evidence of
the form ConseqNotModE(μ, ν, E) whose type does not have that property.

We thus need to restrict the non-determinism present in the definition of EvdGen.
For conditionals, syntax-directed evidence CondE should only be generated when the
postcondition is a singleton whose consequent has been modified. For other constructs,
we may be free either to split the postcondition or to apply the syntax-directed rules
directly. The advantage of the former is that then the evidence provides fine-grained in-
formation about which preconditions come from which postconditions. The advantage
of the latter is that then the evidence becomes more compact.
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3.6 For Loops

We shall introduce 3 extra evidence constructs:

η ::= . . . | ForAsWhileE(η, μ) | ForPolyE(. . .) | InstantiateE(η, μ,A)

Here ForAsWhileE just analyzes a for loop as a while loop; this involves splitting an
assertion φ ⇒ h[A]� into φ ⇒ h� and φ ⇒ A� and thus we lose any information
about individual array elements.

We shall now present a method, first given in [2] which contains further motivation
and examples, that in certain cases allows us to reason about individual array elements.
To do so in a finite way, we need the concept of polymorphic identifiers. Those may
occur in pre/post conditions but never in commands; we shall use u to range over them.
We shall extend |= {Θ} C {Θ′} to cover the case where Θ and/or Θ′ contains a
polymorphic identifier u: then |= {Θ} C {Θ′} holds iff |= {Θ[c/u]} C {Θ′[c/u]}
holds for all constants c. We have the inference rule

� η : {Θ} C {Θ′} � μ : C mods only X fv(A) ∩X = ∅
� InstantiateE(η, μ,A) : {{A�} ∪Θ[A/u]} C {Θ′[A/u]}

which is applicable not just when C is a for-loop. We shall design ForPolyE such that

� ForPolyE(. . .) : {Θ} for q ← 1 to m do C {h[u]}

if certain requirements, to be motivated and detailed below, are fulfilled. Let μ with
� μ : C mods only X where q,m /∈ X , and a polymorphic identifier u, be given.

Index Sets. There must exist a set of arithmetic expressions, {Aj | j ∈ J}with fv(Aj)∩
X = ∅, such that for all array assignments h := H in C there exists j and A such that
H = h{Aj : A} (and thus the assignment may be written h[Aj ] := A).

Linearity. We shall assume, as is very often the case for practical applications, that each
Aj is a linear function in q. That is, there exists integer constants (or identifiers not in
X) bj �= 0 and kj such that Aj is given by bjq + kj . Then for each j ∈ J , we define

A′
j =

u− kj
bj

φj = (u − kj) mod bj = 0 ∧ u− kj ≥ bj ∧ u− kj ≤ mbj

with the intention that whereas Aj computes an index value from the iteration number,
A′

j computes the iteration number from the index value while φj denotes the set of
index values, as formalized by the following properties (to be suitably quantified):

1. if c = [[Aj ]][s|q�→i] for i ∈ {1 . . . s(m)} then [[A′
j [c/u]]]s = i.

2. s |= φj [c/u] iff c ∈ {[[Aj ]][s|q�→i] | i ∈ {1 . . . s(m)}}.
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Local Preconditions. For all j ∈ J , there must exists ηj and Θj such that

1. � ηj : {Θj} C {h[Aj ]�} with u �= fv(Θj)
2. fv(Θj) ∩X ⊆ {h}
3. if h occurs in Θj it is in a context of the form h[A] where for all j′ ∈ J , all

i, i′ ∈ {1 . . . s(m)}, all stores s: if [[A]][s|q�→i] = [[Aj′ ]][s|q�→i′] then i ≤ i′.

Requirement 2 excludes loop-carried dependencies in the body such as h[q] := x;x := y
in which case h[1] depends on the initial value of x while h[2], h[3],. . . depends on
the initial value of y. Requirement 3 is designed to exclude loop-carried dependencies
within the array h; it is possible to list some cases that are easily checkable and which
each is a sufficient condition for this requirement to hold:

1. when J is a singleton {j}, and the only occurrence of h in Θj is in the context
h[bq + k] where b ≥ bj and b ≥ 1 and k ≥ kj ;

2. when bj = 1 for all j ∈ J , and if h occurs in some Θj it is in a context of the form
h[A] with A of the form q + c where c satisfies:

∀j ∈ J : c ≥ kj or c ≤ kj −m.

Both conditions will accept a loop body containing (only) h[q] := h[q + 1] and reject a
loop body containing h[q] := h[q − 1].

We are now ready to construct the precondition Θ, as the union of

BOUND {true⇒ m�}
INDEX {true⇒ w� | w ∈ ∪j∈J fv(Aj) \ {q}}
OUTSIDE {∧j∈J ¬φj ⇒ h[u]�}
UPDATED for each j ∈ J , the set add∧φj

(Θj [A
′
j/q]).

Here BOUND ensures that the two runs agree on the number of iterations, while IN-
DEX ensures that the two runs agree on which indices are updated. For an index that
might not be updated, the two runs must agree on the original value, as expressed by
OUTSIDE. But for an index that may be updated, we apply the computed preconditions,
as expressed by UPDATED.

Example. As in [2], we can analyze a for loop whose body swaps5 h[q] and h[q +m]
and where we therefore have J = {1, 2}, A1 = q, A2 = q +m, b1 = b2 = 1, k1 = 0,
and k2 = m. We compute φ1 = u ≥ 1 ∧ u ≤ m, φ2 = u −m ≥ 1 ∧ u −m ≤ m,
A′

1 = u, and A′
2 = u −m; we also get Θ1 = {h[q +m]�} and Θ2 = {h[q]�}. The

abovementioned sufficient condition 2 amounts to the 4 claims

0 ≥ 0 or 0 ≤ 0−m 0 ≥ m or 0 ≤ m−m

m ≥ 0 or m ≤ 0−m m ≥ m or m ≤ m−m

which are all easily verified. Hence we may generate the expected precondition

{ m�, (u < 1 ∨ u > 2m)⇒ h[u]�,

1 ≤ u ≤ m⇒ h[u+m]�, m+ 1 ≤ u ≤ 2m⇒ h[u−m]� }.
5 Since each position participates in at most one swap there is no loop-carried dependency.
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4 Machine-Checked Evidence and Soundness Overview

We now discuss how the evidence constructors of the previous section are represented
and proven sound in Coq. Our technical report [4] provides detailed correctness proofs
for all the evidence constructors. At the time of writing, we have completed the cor-
responding formalization of the proofs in Coq for assignments, conditionals, arrays,
polymorphic tuples and almost all of the for loop, and we do not anticipate problems
completing the remaining soundness proofs (remainder of for plus while).

4.1 Representation of Evidence

Our representation of evidence is based on deep embeddings of the language and the
logic in Coq, using type-respecting categories of variables (e.g. SkalVar), expressions
Expr (separated into arithmetic, boolean and array expressions AExpr, BExpr, HExpr),
and Commands. Based on these definitions, we define expression evaluation and the
operational semantics in direct correspondence to the definitions in Section 3; for ex-
ample, Opsem s C t means that command C transforms state s into state t.

A 2-assertion is made up of a BExpr and an Expr:

Definition TwoAssn :=prod BExpr Expr.

Abbreviating the type of lists of 2-assertions as TwoAssns, we introduce the inductive
type of pre/postconditions as

Inductive assns :=
| Assns : TwoAssns → TwoAssns → assns
| APoly : (AExpr → assns)→ assns.

Here, the first constructor carries a precondition/postcondition pair and will be used for
standard triples. The second constructor allows the assertions to be parametrized by a
shared variable, and will be required for implementing for-loops.

Evidence takes the form of an inductive proposition with constructors corresponding
to the rules in Figures 4 and 5.

Inductive TEvid (X: list SkalVar) : Command → assns → Prop :=
| TSkipE ... | TAAssignE ... | TCondE ...
...

For example, the constructor for TAAssignE,

| TAAssignE : ∀Θ x A, TEvid X (Assign x (AExp A)) (Assns(TwoAssnsSubstA Θ x A) Θ)

is a direct translation of rule (3), where TwoAssnsSubstA Θ x A represents the substitu-
tion (code omitted) of arithmetic expression A for x in the 2-assertion Θ.

Evidence for conditionals (rule 6) is translated similarly; the rule takes three explicit
arguments of evidence type, one for each possible outcome of the branch, and one for
the necessary precondition.

| TCondEN: ∀ {Θ1 φ E Θ2 Θ′ C1 C2 φ0}
(η1: TEvid X C1 (Assns Θ1 [(φ, E)])) (η2: TEvid X C2 (Assns Θ2 [(φ, E)]))
B (ν : NPCEvid X φ0 (Cond B C1 C2) φ),
andIntoTheta Θ1 B ++ andIntoTheta Θ2 (NotExpr B) ++ [(φ0, BExp B)] = Θ′ →
allVarsIn (BFv φ0) X =true → TEvid X (Cond B C1 C2) (Assns Θ′ [(φ, E)])
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We have evidence forms declared for all syntax but while and for loops, and we have
also declared constructors for all the rules mentioned in Fig. 5. There are similar induc-
tive types and accompanying soundness proofs for NPC, 1-implication, 2-implication
and expression equivalence. Rules representing decision-procedure-validated evidence
such as CheckLI are currently axiomatically admitted, although future work will aim to
verify the output of decision procedures using methods similar to [6].

4.2 Soundness

The soundness of constructed evidence terms rests on the interpretation of 2-assertions

Definition twoSatisfies(s1 s2:State) (asn: TwoAssn) := let (φ, E) = asn in
BEval φ s1 = Some true → BEval φ s2 = Some true → (Eval E s1 = Eval E s2)

which corresponds to the informal definition given earlier in the paper.6 The interpreta-
tion is naturally extended to lists of 2-assertions (where Forall is the universal quantifi-
cation over list elements, taken from the Coq library):

Definition twoAssnsInterpretation (s1 s2: State) (a:TwoAssns) : Prop :=
Forall (twoSatisfies s1 s2) a.

We are now ready to model the definition (Sect. 3.2) of the predicate |= {Θ} C {Θ′}.
Definition validHoareTriple (X: list SkalVar) C (asns: assns): Prop :=
match asns with
| Assns pre post ⇒ ∀ s s’ t t’,

(∀ x, In x X → ∃ v1, lookup s x = Some v1 ∧ ∃ v2, lookup s’ x = Some v2) →
Opsem s C t → Opsem s’ C t’ →
twoAssnsInterpretation s s’ pre → twoAssnsInterpretation t t’ post

| ...
end.

Our soundness statement (Theorem 2 in Sect. 3) is formulated as follows.

Theorem soundness : ∀X C asns, TEvid X C asns → (validHoareTriple X C asns).

Whenever we apply this soundness result to a defined concrete piece of evidence, the
type of the resulting construction explicitly witnesses the validity of the triple. For ex-
ample, applying the soundness result to a piece of evidence named assignEvid

Definition evidSound := soundness assignEvid.

guarantees our intended security property in that it yields a term of type

validHoareTriple X cmd (Assns pre post).

Performing the proof of the soundness theorem constitutes a major engineering task
even once all the definitions are set up correctly. As an indication of the effort, the Coq
code has around 2300 lines of soundness proof and only 590 lines of trusted definitions;
it formalizes a manual correctness proof in [4] which is about 5.5 pages from about 610
lines of LATEX source.

6 This direct correspondence between informal and formal definitions is crucial, as the formal
definitions introduced here form part of the trusted code base of our system.
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In order to address the concern that certificates may be unacceptably large, we have
also explored an implementation of the precondition generator inside Coq, in the style
of proof-by-reflection. Our precondition generator consists of a Gallina function

Fixpoint generatePrecondition (c:Command) (post:TwoAssns)
(X: list SkalVar): (TwoAssns ∗ list SkalVar) := ...

with defining clauses that closely resemble Figures 4 and 5. The soundness theorem

Theorem generatePreconditionEvidence: ∀C Y X Z post pre, allVarsIn X Y = true→
(pre, X) = generatePrecondition C post Z → TEvid Y C (Assns pre post).

expresses that any result (pre, X) from a call to generatePrecondition yields evidence for
the triple made up from the inferred precondition and the supplied command and post-
condition. Thus, evidence terms need not be explicitly constructed, as valid evidence
can be constructed automatically for any command and postcondition.

5 Evaluation

We summarize our initial experience in applying our SIFL deduction engine for evi-
dence generation. The SIFL precondition generation algorithm supports assignments,
conditionals, arrays, for and while loops, polymorphic flow contracts, and procedure
calls. We tested this implementation on procedures from a collection of embedded ap-
plications (an Autopilot, a Minepump, a Water Boiler monitor, and a Missile Guidance
system – all developed outside of our research group), and a collection of small pro-
grams that we developed ourselves to highlight common array idioms that we discov-
ered in information assurance applications. Approximately 6-15 procedures from each
of these examples were selected due to having the richest control flow and loop struc-
tures. The security-critical sections to be certified from code bases in this domain are
often relatively small, e.g., roughly 1000 LOC (non-comment lines of code) for a Rock-
well Collins high assurance guard and 3000 LOC for an (undisclosed) device certified
by Naval Research Labs researchers [7]. The average LOC per procedure in our ex-
amples is 22. In this evaluation, we focused on running the tool in a mode that infers
information flow contracts. For each procedureP , and each output variable w, the algo-
rithm analyzes the body wrt. post-condition w�. All experiments were run under JDK
1.6 on a 2x2.6 GHz Quad Core Intel Xeon Mac Pro with 32 GB of RAM.

We were most interested in evaluating (a) the size of the generated evidence, (b)
the number and structure of assertions in the inferred precondition (for the purpose
of minimizing its size), (c) the time required for the algorithm to infer a contract and
generate evidence, and (d) the time required for Coq to type-check (i.e., establish the
correctness) of the evidence. In the subsequent paragraphs, we shall summarize the
outcomes for the first 3 measures (see [4] for detailed data and evidence outputs for all
examples we considered); for (d), no procedure required more than 3 seconds.

In contrast to other proof-carrying code applications such as mobile code, contract
size is not as significant an issue in our context since contracts are not being trans-
mitted or checked at run-time. Instead, the focus is on leveraging contracts for greater
assurance in the certification process. We consider three different metrics for the size of
evidence: the number of evidence constructors, the total number of Coq abstract syntax
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tree (AST) nodes (which captures the size of assertion expressions and program ASTs
in the evidence), and the number of bytes in the text file holding the evidence. For the
full version of the mailbox example of Section 2 which has 24 LOC, the generated ev-
idence includes 318 evidence constructors, 3729 Coq AST nodes, and 89 KB of text.
For a slightly longer example (30 LOC) from the autopilot codebase that has one of
the longest analysis run-times, the presence of four conditions leads to larger generated
evidence due to more conditional preconditions: 326 evidence constructors, 19461 Coq
AST nodes, and 211 KB of text. Our current contract representation includes the syntax
tree of the program as well as the 2-assertions generated between each command. Thus,
many program expressions are repeated numerous times across the evidence structure
for a procedure. There is significant opportunity to optimize the size by, e.g., common
subexpression elimination.

Initial examination of the generated preconditions identified a number of minimiza-
tion opportunities (e.g., simplifying assertions of the form true ∧ φ⇒ E� to φ⇒ E�

or removing a 2-assertion when it is implied by another within the precondition). In the
mailbox example, there are 52 AST nodes in the precondition for OUT 0 DAT without
minimization and 28 when minimization applied. Our current strategy for expressing
minimization includes many fine-grained reasoning steps using the rules of Figure 6.
Thus, the number of evidence constructors in the OUT 0 DAT derivation actually in-
creases from 25 to 83. Potentially, this can be reduced by making the Coq checker
“smarter” by having it do more manipulation of logical expressions without direct in-
struction from the evidence generator.

The time required for processing a procedure ranged from 3 to 140 secs. As previ-
ously discussed, the correctness of minimization of assertions was validated with calls
to SMT solvers. The repeated calls to the SMT solvers were the dominating factor in the
time required to infer contracts, and we have not yet devoted any effort to optimize this.
Many of the minimization steps can be implemented using simple syntactic checks,
and we are in the process of implementing and proving correct a minimizer in Coq
that will allow us to dramatically reduce the number of SMT solver calls. Experimental
results from our earlier work [1] in which we used only syntactic scans to minimize
showed that inference for almost all the procedures could be completed in less than a
second. Our approach is compositional which greatly aids scalability when considering
the overall time requirements for a complete application.

6 Related Work

Bergeretti and Carré [8] present a compositional method for inferring and checking
dependencies among variables in SPARK programs. That approach is flow-sensitive,
unlike most security type systems [9] that rely on assigning a security level (“high”
or “low”) to each variable. Chapman and Hilton [10] present an approach, now imple-
mented in the latest SPARK release, for extending SPARK information flow contracts
with lattices of security levels and enhancing the SPARK Examiner accordingly.

Agreement assertions (inherently flow-sensitive) were introduced in [11] and later
extended in [5] to introduce conditional agreement assertions (for a heap-manipulating
language). In [1] that approach was applied to the (heap-free) SPARK setting and



A Certificate Infrastructure for Machine-Checked Proofs 387

worked out extensively, with an algorithm for computing loop invariants and with re-
ports from an implementation; then arrays were handled in subsequent work [2].

Our evidence-checker is an example of the proof-carrying code paradigm [12]; it is
foundational [13] in that the rules used by the evidence checker are themselves proved
sound with a machine-checked proof. Although the original PCC generated proofs
mainly via type-checking, more recently the PCC paradigm has been extended to poli-
cies of mobile code concerning resource consumption and information flow [14,15].
Certificate generation for such systems was obtained by formalizing static analyses (re-
fined type systems or abstract interpretation frameworks) either directly at the level of
virtual machine code, or by providing compiler-mediated interpretations of appropriate
high-level analyses [16,17,18]. Wildmoser and Nipkow developed verified VCGens for
bytecode for a deeply embedded assertion language for bytecode [19]. In the context of
abstract-interpretation-based PCC, Besson et al. [20] employed certificates in the form
of strategies for (re-)recomputing fixed points at the consumer side.

Techniques for reducing the size of evidence representations using oracles [21] and
small witnesses [22] developed into reflective PCC [15] where the evidence checker (or
even a partial evidence reconstruction algorithm) is implemented in the tactic language
of the proof assistant, and proved sound by the principle of reflection. We have found
(cf. Section 4) that our current evidence checker permits this approach.

In addition to direct justification of static analyses wrt. operational semantics, sev-
eral of the above-mentioned formalizations employ program logics and/or VCGen’s as
intermediate representations. In order to employ these for the verification of informa-
tion flow, the relational nature of information flow security must be taken into account,
either by direct use of relational program logics [23], or by suitable encodings [24,25]
in nonrelational logics based on the idea of self-composition [26,27].

In contrast to (typically not foundationally validated) efforts to relax baseline secu-
rity policies to more permissive notions (e.g. declassification), our conditional informa-
tion flow analysis aims to improve the precision and trustworthiness of static analysis
results for the baseline policy, in the setting of an existing domain-specific tool flow
methodology. Dufay, Felty, and Matwin [28] and Terauchi and Aiken [29] provide tool
support for the verification of noninterference based on self-composition. In [28], the
Krakatoa/Why verification framework is extended by variable-agreement assertions and
corresponding loop annotations, and emits verification conditions in Coq that are typi-
cally interactively discharged by the user. In [29], information inherent in type systems
for noninterference is exploited to limit the application of the program-duplication to
smaller subphrases, obtaining self-composed programs that are better amenable to fully
automated state-space-exploring techniques. Neither system produces foundationally
validated and independently checkable artefacts of evidence relating the source pro-
gram to user-level specifications, and it is at present unclear whether either could be
extended to support conditional information flow policies.

7 Conclusions and Future Work

By implementing an evidence emitting algorithm and an associated evidence check-
ing framework in Coq, we have provided a solution that allows developers to work
at source level to specify/check rich information flow contracts while still enabling
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machine-checked proofs that source code implementations conform to contracts. This
work puts in place a crucial element of our larger vision for end-to-end security assur-
ance – namely, the ability eventually to leverage our other work on formally verified
compilers [30] to provide a tool chain that enables us to prove that deployed executable
code conforms to complex information flow policies stated as source-level contracts.
Our next steps include adding a higher-level information flow policy specification lan-
guage on top of our framework, enlarging the subset of SPARK that our tools can han-
dle, and engineering a connection to the CompCert verified compiler stack [31]. We are
also working with our industrial partners to evaluate our tools on additional examples.
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