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ABSTRACT
Building Automation System (BAS) is a computer-based control
system that is widely installed in office buildings and laboratories for
monitoring and controlling mechanical/electrical equipment. With
the advancements in Cyber-Physical System (CPS) and Internet
of Things (IoTs), BAS is in the process of becoming more intelli-
gent by merging computing resources and network communication
with physical control. Along with potential benefits, it also brings
tremendous risks of security breaches and safety violations, espe-
cially when it comes to Programmable Logic Controllers (PLCs).
In this paper, we systematically analyze biocontainment laboratory
control models based on real case scenarios from Biosecurity Re-
search Institute (BRI) at Kansas State University. We present a
vision for a new secure Real-Time Operating System (RTOS) archi-
tecture, which leverages various technologies, including microkernel
structure, Trusted Platform Module (TPM), proxy-based policy en-
forcement, and formal verification. The secure RTOS architecture is
designed specifically to work with embedded controllers which are
widely used in BAS and other CPS to achieve a highly secure and
trustworthy control system.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design; Security; Reliability

Keywords
Cyber-Physical System; Building Automation; RTOS; Microkernel;
TPM; Trusted Computing
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1. INTRODUCTION
Building Automation System (BAS) is a complex network-based

distributed control system responsible for the communication and
cooperation of different electrical/mechanical subsystems. A typical
building automation is designed to automatically control a build-
ing’s heating, ventilation, and air conditioning (HVAC). Along with
advances in control systems, BAS has evolved into a gigantic sys-
tem. It not only handles HVAC, lighting, air humidity, but also
manages building security and safety subsystems by controlling and
monitoring fire and flood safety, CCTV, elevator, power supply, and
part of the process for room access authentication. Often, BAS pro-
vides a communication backbone which serves as an infrastructure
that provides rules, policies, and integration medium for different
subsystems.

Buildings, including commercial, government, and private, are
a ubiquitous critical infrastructure [37] and yet the last to be con-
sidered as such. The Boston Marathon bombing revealed that the
financial losses from the shutting down of large commercial build-
ings in the area were in the hundreds of thousands of dollars per day.
Recent cyber attacks have targeted critical infrastructure control
system [1, 31] raising safety and security concerns. The safety and
security of BAS is at high risk. Unfortunately, there have been few
systematic studies of cybersecurity for building controls, in part be-
cause the sector is completely dominated by vendors who mostly do
not have much interest in academic research. A significant number
of off-the-shelf BAS products in the market are currently based on
outdated technologies, which have limited security features, and un-
predictable vulnerabilities due to their backward-compatible designs
and focus on ease of maintenance. Moreover, the building industry
is highly fragmented and no single vendor has a controlling share of
the market to force change, which makes the situation even more
challenging.

In this paper, we conduct a systematic case study of biocon-
tainment facility building automation system based on real case
scenarios from Biosecurity Research Institute (BRI) at Kansas State
University, and analyze specification of the requirements for each
control task. We provide a new possible research direction to se-
cure CPS infrastructure from an operating system’s point of view
and present a roadmap of our proposed secure operating system
architecture. Our contributions are:
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• We systematically study realistic bio-containment facility
building scenarios and identify safety requirements therein.

• We provide a detailed analysis of potential security vulner-
abilities in the BAS and how that may impact the safety re-
quirements of biocontainment facilities.

• We propose an architecture and roadmap for ensuring secu-
rity/safety properties of building environments by adopting
a microkernel-based architecture, where the real-time oper-
ating systems (RTOS) on embedded controllers become the
security anchors for such cyber physical systems. We point to
directions where this architecture could be used to strengthen
the security/safety properties of BAS.

2. BACKGROUND
Buildings worldwide account for 30% to 40% of global energy

consumption [45]. There are increasing concerns of energy effi-
ciency and high demand for more intelligent buildings. A number
of advanced technologies are designed to incorporate into BAS to
make it smarter. The concept of Smart Building has existed since
the 1980’s, and a definition given by the Intelligent Building Insti-
tution in Washington is “one which integrates various systems to
effectively manage resources in a coordinated mode to maximize:
technical performances; investment and operating cost savings; flex-
ibility.” [13]. The idea is to use computers and networks to au-
tomatically perform operations based on predefined rules. Today
leveraging the advance of Internet and various digital technologies,
researchers are proposing Cyber-Physical System (CPS) and Inter-
net of Things (IoTs), which conjoin computational and physical
resources through digital networks to achieve a more intelligent,
automatic, and energy-efficient control system.

The benefits new technologies bring to BAS have also opened the
gate for various safety and security risks. Those trends in the build-
ing industry such as convergence of control and IT networks, use of
mobile devices to access building controls, and the increasing use
of COTS is raising the risk of cybersecurity breaches dramatically.
Even though the number of reported attacks on Industrial Control
Systems are few [17, 46], one can expect them to increase in the
coming years due to a number of issues. BAS are already connected
to the Internet. As shown by Billy Rios at Black Hat USA 2014 [40],
there are 21,000 Tridium Systems (one of the most popular plat-
forms for building control) connected to the Internet. It has been
identified in over 50,000 buildings which are exposed to the Internet
either intentionally or due to misconfiguration and can be publicly
searched using tools such as Shodan [28, 40]. Besides, BAS widely
uses outdated low level protocols, such as BACnet, KNX, Modbus,
which send data in plaintext and lack proper authentication mecha-
nisms. Works [2, 32] show that attackers can easily sniff control
packets, modify Programmable Logic Controller (PLC) arbitrarily,
use carefully crafted low-level data gathered through PLCs to inject
high-level control software. Moreover, many commercial BAS, like
MetaSys and Niagara are based on outdated Windows operating
systems. Stuxnet [47] suggests that specifically crafted malware can
be easily launched against BAS to sabotage high security-concerned
institutions. While the U.S. Department of Energy works together
with alliances launching a new Net Zero Energy Installation (NZEI)
initiative for achieving self-sustaining buildings, building infras-
tructure is integrating with different internal and external infras-
tructures [5]. It can be a stepping stone for attacking other critical
infrastructures such as power, water, transportation, health service,
etc. With the potential threats, attack surface, and the relatively low
risk to impact ratio for attackers, buildings would be an attractive
target for terrorist attack and cyber war.

2.1 PLC Basics
PLCs play a critical rule in control systems. A PLC is a digi-

tal embedded device used for automation of industrial processes.
They perform real-time control of electromechanical processes. A
PLC works by continually scanning a program, which is called the
scan cycle. This involves reading sensor measurements repeatedly,
executing control logic program to calculate output, and actuating
output with electromechanical processes. PLCs are responsible for
constantly adjusting physical machinery based on the sensor mea-
surement as well as functions as a gateway between the machinery
and human operators. PLCs translate continuous analog signals
into digital values. Processing is performed using a cycle of input,
processing and output. The control logic for processing is typically
represented using relay ladder logic written in a graphical language.
The most widely used PLC control structure is a Proportional Inte-
gral Derivative (PID) controller. This controller algorithm has three
separate constant parameters: the proportional, the integral, and the
derivative values. PID controllers are used to dynamically adjust
output by comparing setpoint (desired value) and actual value of the
process variable from the process under control.

2.2 PLC Security Issues
BAS security and safety has gradually raised concerns of both

industry and academia. While many researchers are working to
secure BAS protocols, and designing new detection algorithms [6,
8] we believe that the security of Programmable Logic Controller
is overlooked. PLC is the controller that directly interacts with
sensors and actuators, as a central anchor. The stability of PLCs is
the weak link in a chain that directly influences the robustness of the
BAS. Current PLCs, however, are relatively fragile. A majority of
PLCs are limited electrical devices that run a control loop directly
on bare hardware. They lack functionality for simple emergency
situations such as power outage or network failures. Some PLCs
run a simple real-time operating system (RTOS); e.g., FreeRTOS.
All applications are compiled together with a real-time scheduler
in a single binary file. Systems lack the capability for handling
complex situations and the absence of protection rings makes it
trivial for malware to gain system privileges. There are some PLCs
that use advanced operating systems, e.g., customized Linux, QNX,
VxWorks, etc. Although QNX and VxWorks are embedded real-
time operating systems that are designed for industrial control with
hard real-time capability, there are, however, certain well-known
vulnerabilities in VxWorks and QNX [19, 41]. More importantly,
those general-purpose OSes either are designed with legacy support
for compatibility reasons, which have a large attack surface, or are
proprietary software that lack technical details for evaluation. There-
fore, it gives designers no confidence for functional correctness and
are almost inevitable to have vulnerabilities [41]. Furthermore, em-
bedded controllers has their special properties that demand different
requirements from a general purpose real-time OS. For example,
the work by Hernandez, et al. [16] shows how attackers tamper and
own a Nest thermostat, which runs on a Linux based platform, with
a reset attack.

3. RESEARCH METHODOLOGY
While the need is obvious, making building controls cyber-secure

is a challenge for a variety of reasons. Any approach to securing
building controls must accommodate the long field life of control
hardware. But at the same time, we are seeing tremendous growth in
the software-enabled functionality to support new business drivers
such as energy efficiency, customized comfort, etc. This means
that while control hardware will stay in place for a decade or more,
the software will follow the pattern of IT in using highly insecure,
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Figure 1: Building Security/Safety Control Framework

but quick-to-market technologies such as web- related services.
The essential challenge then is: how can we persuade the building
industry that effective cybersecurity is achievable at reasonable cost
and without major disruption to the existing infrastructure? A related
challenge is how to create a model architecture for control that
permits the use of IT software components but avoids the attendant
constant patching and upgrading. The goal of this research is to
fulfill this vision by designing a security/safety modeling framework
for building controls; the framework will enable decomposing the
domain-specific security/safety properties into the various processes
that run on embedded controllers, so that a microkernel based real-
time operating system (RTOS) can guarantee that the critical tasks
a controller must fulfill will never be jeopardized by the malicious
environment. In other words, the attacks in the insecure cyberspace
will be stopped at embedded controllers, which serve as the security
anchors of BAS (and possibly other types of cyber physical systems).

Smart building is a unique environment that poses challenges to
security and safety. Buildings are containers of many different types
of human activities supported by various types of technologies. The
type and utility of a building determines its unique security and
safety needs. The very important first step is to research the mul-
titude of security/safety issues that may arise and properly model
them so each embedded controller in the environment has clearly
defined security/safety requirements it has to uphold. In this paper,
we conduct different investigations of BAS application scenarios,
with special focus on a biocontainment laboratory. Figure 1 shows
the envisioned solution framework. Based upon scenario analysis,
we abstract the model of building automation system and the logic
behind control policies. We extract safety/security constraints that
should be enforced by different layers of system running on those
embedded controllers. Through our investigations, we believe that
microkernel-based real-time OS is appropriate for critical infras-
tructure control systems. Microkernel architecture is designed to
address the increasing growth of kernel and the difficulty of man-
aging and maintaining the code base. Different from monolithic
kernel, microkernel breaks up functionalities and modularizes them
into independent components. Nonessential kernel parts are moved
into user space. The core functionality is isolated from system ser-
vices and device drivers, which greatly increases the stability of
OS. In a microkernel architecture, different components are loosely
tied together through Interprocess Communication (IPC) similar to
distributed system. Such a setup enables system designers to define
and enforce fine-grained constraints separately.

4. BIOCONTAINMENT FACILITY
An important use case of BAS is one for controlling and monitor-

ing a biocontainment facility. Biocontainment facilities are designed
to do research on infectious diseases, pathogens, quarantined pests,
invasive alien species and living organisms [24]. The nature of this
kind of laboratory makes it highly hazardous. Since some samples
might be contagious for human beings, oncereaching the public
space it could cause tremendous danger that even jeopardize hu-
man lives. In this case, protecting just the worker is oftentimes not
enough. Systems must also be in place to protect the environment
and the facility from possible contamination. In the United States,
the Centers of Disease Control and Prevention (CDC) have specified
different biosafety levels of biocontainment precautions. They range
from the lowest level 1 (BSL-1) to the highest at level 4 (BSL-4)
for isolating dangerous biological agents in an enclosed laboratory
facility [36]. Biosafety levels increase safety and security measures
as the dangers associated with the agents increase. For example,
BSL-3 is applicable to clinical, diagnostic, teaching, research, or
production facilities in which work is done with indigenous or exotic
agents. The agents may cause serious or potentially lethal disease
after inhalation. BSL-4 is specifically for fatal diseases such as
the Marburg or Ebola viruses [36]. For guiding the design and
maintenance of laboratories, the CDC and the U.S. Department of
Agriculture - Agricultural Research Service (USDA-ARS) have pub-
lished Biosafety in MicroBiological and Biomedical Laboratories
(BMBL) and USDA-ARS Facilities Design Standards respectively.
They define various policies and standards for HVAC, air pressure,
temperature, and the procedure of handling special situations [36,
44]. Moreover, The National Institutes of Health (NIH) details de-
sign requirements and guidance manuals for biomedical research
facilities [35]. In all of them BAS is regarded as critical and respon-
sible for enforcing biosafety level and personnel security. BRI is a
biosafety level 3 and biosafety level 3 agriculture facility.

4.1 Scenario Analysis
One of the high-priority concerns of a biocontainment facility is

airborne hazards exposures through air exchange. Pathogens can be
transmitted through air. Modern laboratories are busy environments
with personnel sharing equipment across overlapping workstations.
Different laboratories usually dedicate to different tasks. Without
proper isolation and aseptic counter measures, contaminants can
easily be transmitted to different areas and pollute the purity of cell
cultures as well as a safe lab environment. The solution for this is to
constrain airflow. Only let air flow from the corridors inward ensur-
ing that contaminated air cannot escape from the laboratory to other
parts of the facility. Therefore, by requirement, all biocontainment
laboratories must constantly maintain negative differential room
pressure to prevent cross-contamination. In order to achieve this,
multiple precautions are enforced by BAS to ensure uninterrupted
safe operations. Those include directional airflow (air flows from
areas of lower containment to areas of higher containment), ventila-
tion, high-efficiency particulate (HEPA) filters that provide a very
high filtration efficiency for the smallest as well as the largest par-
ticulate contaminants, door interlock control that enforces no more
than one door opens in a zone at the same time, ID authentication
and door access. Furthermore, chemical processes are temperature
sensitive. Laboratories must maintain an appropriate temperature
for chemical processes as well as for occupants. Last but not least,
the use of chemicals and other potentially hazardous compounds
separates laboratories from other parts of building spaces. How to
properly isolate biocontainment laboratories from other building
spaces, while maintaining a convenient, comfortable and energy-
efficient environment is also important. With those concerns in mind,
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Figure 2: Biocontainment Laboratory Scenario Layout

our presented scenario is based on a real biocontainment facility.
For safety consideration, all examples discussed in this paper are
assumptive.

For the sake of simplicity, in this scenario we are only considering
a suite with five rooms in a biocontainment facility. A biocontain-
ment facility is usually separated into different isolated zones. Each
zone is totally independent from the others and has its own venti-
lation system. In our scenario, the suite is composed of an isolated
zone. It contains four laboratories for conducting different research
and a chamber as a public area for researchers. As shown in Figure 2,
rooms start from No. 1 to No. 4 are biocontainment laboratories
and room No. 5 is the public chamber. The suite must comply with
basic biocontainment laboratory standards. In this case, the suite
should only allow certain authorized researchers to have access.
Every authentication should be logged for audit purposes. Each
laboratory within this suite has to constantly maintain a negative
differential air pressure relative to the chamber room in order to
avoid airborne hazards exposures. Meanwhile, different laboratories
maintain independent air pressure among each other and airborne
hazards exposures are prevented through controlling doors by using
interlock system installed in chamber. Each laboratory has to keep
the temperature in a certain range. When a laboratory is operational,
the fume hood fan in the room has to start working steadily. Fur-
thermore, aside from normal operations, laboratories need to be
decontaminated when hazards have been detected as exposed. In
order to handle this situation, laboratories usually have two modes:
normal mode and decontamination mode (DECON mode). For this
purpose, each room has a strobe that is used to indicate emergency
situations including power failure, DECON mode, door-open-too-
long alarm, etc. When in DECON mode, laboratories would only
allow researchers to exit and reject any ordinary user’s entering
requests except requests from users with administrator privilege.
No matter in what emergency situations, certain functionalities of
a laboratory have to work – for example, user authentication and
the door access system, directional airflow control, fire alarm, etc.
Besides, in order to prevent cross-contamination, no two doors in
an isolated zone should be allowed to open at the same time. This
is enforced by the magnetic door interlock subsystem, except when
the fire alarm is being triggered. When the fire is being detected,
the fire control subsystem will override the interlock subsystem and
unlock all doors at the same time.

The logic structure of the suite BAS is pictured in Figure 3. Each
laboratory has a controller (the Laboratory Controller) that is used
to conduct Flow Tracking and Feedback Controls. Flow tracking
controls, a.k.a. offset controls, maintain a constant larger amount
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Figure 3: Biocontainment Laboratory Scenario Structure

of exhaust flow than supply flow. For example, some laboratories
require to maintain 150 cfm more exhaust airflow than supply air-
flow of all time. Because more air is exhausted than supplied in
a relatively airtight environment (such as a laboratory with door
closed), the laboratory differential air pressure is negative. When
the door is open, however, because the nature of air dynamics the
differential pressure would drop to zero rapidly. Therefore, when
the door is open, the differential pressure is monitored by a feed-
back loop using feedback controls. Feedback controls constantly
measure the differential pressure comparing to the reference (in this
case, the chamber). When the differential pressure drops below
the threshold, the feedback loop would temporarily adjust exhaust
and supply airflow within the allowed range in order to maintain
negative differential pressure (by boosting the exhaust airflow and
decreasing the supply airflow). If those two steps fail to maintain
relative negative pressure of the laboratory, DECON mode will be
triggered. Chamber Controller controls air pressure using Direct
Pressure Controls, which modulate supply and exhaust dampers
dynamically for maintaining negative differential pressure against
outdoor air pressure. The Chamber Controller is also responsible
for keeping its air pressure as stable as possible. All laboratories are
relatively separate from each other and maintain their own access
control, while Chamber Controller controls functionalities for the
whole suite, e.g., the magnetic door interlock for all doors in this
zone, the fire detector and alarm, etc. The Network Automation
Engine (NAE) is a central control device that is designed to provide
a web-based user interface, to create and push administrator defined
policies and a database for each controller. On the very top of the
figure is a database, which could be a cloud server or a local data
center that is used to store policies, data, logs, and authorization in-
formation. Controllers are connected to a router through the BACnet
protocol; routers communicate with the NAE through the Modbus
protocol. The NAE communicates with database using Ethernet.
Suite administration network is separated from Internet access using
VLan. The detailed functionalities that are supported by Laboratory
Controllers, Chamber Controllers, and the NAE are described below.

4.2 Laboratory Controller

1. Maintains 150 cfm exhaust airflow more than supply airflow.
2. Senses air pressure and sends air pressure status to the Cham-

ber Controller.
3. Senses the laboratory door position; when one or more doors

are open, receives the Chamber Controller overwriting com-
mand for the exhaust and supply airflows.

4. Flashes strobe: when differential pressure passes the thresh-
old, when one or more doors open too long, when power
failure, when the DECON mode is on, etc.
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5. Senses the laboratory door position; when door is open for
more than 20 seconds, twinkles strobe.

6. Reads access card reader, the access button statuses; authenti-
cates with local database; controls the door lock.

7. Records all actions, including access authentication, current
room temperature, current air pressure, laboratory status, etc.

8. Maintains temperature at 65 - 80 F.
9. Adjusts temperature according to user setup from the panel.

10. In DECON mode, only allows exit and turns on strobe.
11. Senses fire detector and notifies the NAE.
12. When fire alarm triggers, unlock door.
13. Maintains heartbeat signal with the NAE.

4.3 Chamber Controller

1. Senses outdoor air pressure and adjusts exhaust/supply air-
flows for No. 5 chamber room (Direct Pressure Controls).

2. Receives air pressure from different Laboratory Controllers in
the same zone and calculates differential air pressure against
itself respectively (Feedback Controls).

3. Flashes the chamber strobe when any laboratory strobe flashes.
4. Senses all door position sensors in this zone and maintains

the magnetic interlock.
5. Reads access card reader, the access button statuses; authenti-

cates with local database; and controls the door lock.
6. Records all actions, including access authentication, current

room temperature, current air pressure, laboratory status, etc.
7. Maintains temperature at 65 - 80 F.
8. Adjusts temperature according to user setup from panel.
9. In DECON mode, only allows exit and turns on strobe.

10. Senses fire detector and notifies the NAE.
11. When fire alarm triggers, unlock all doors, and disable the

magnetic interlock.
12. Maintains heartbeat signal with the NAE.

4.4 NAE

1. Monitors heartbeat signals with all devices, and records their
statuses.

2. Receives user authentication requests from controllers and au-
thorizes access control according to the queries from database.

3. Pushes/updates/creates database information and policies for
controllers.

4. Provides web interface.
5. Sends out/cancels DECON mode signal.
6. Checks statuses of different fire detectors through room con-

trollers and automatically turns on/off fire alarm by coordinat-
ing with controllers.

7. Automatically sends message/email to administrators based
on policies.

5. VULNERABILITIES
In the scenario discussed above, there are certain vulnerabilities.

First, as many researchers pointed out, both BACnet and Modbus
data are transmitted in plaintext. It is trivial for attackers to figure
out what each packet means and what control commands are, if they
manage to access the network [42]. That a number of building con-
trol devices can be found through Shodan suggests that many control
network is directly connected to Internet. Although some control
network is well separated through VLan, like the one our scenario
describes, it cannot prevent malicious attackers from attaching unau-
thorized devices and eavesdropping on control network or changing
network configuration through compromised administration hosts.

While it is not hard to directly add encryption features to existing
protocols, for this specific case, however, even there is a proper
encryption method, it is still possible for attackers to inject packets,
if it lacks robust infrastructure to support it. For example, SSL
without a valid certificate issued by trusted third party is vulnerable
for Man-in-the-Middle attack. Because BAS is designed for steady
daily use and expected to reliably work for decades, attacker has
plenty of opportunities to try different methods out. In DEF CON
19 Kennedy demonstrated how one can sniff encryption keys out
of controllers that use ZWave protocol with AES encryption during
initialization of devices [12]. The fundamental problem is that those
authorized devices on the network are lacking a reliable mechanism
to recognize each other and delegate trust. Second, because current
BAS lacks identification, privilege separation is very limited and
obscure. Devices either have all privileges or none. There are no
effective ways to enforce fine-grained access control. Hence, if one
device on the network is compromised it is very likely that it will
open the gate for attackers to impersonate other devices and send
out arbitrary control commands on their behalf. For example, if
one laboratory controller is controlled by attackers, it is not hard
for them to use it to impersonate NAE and send DECON mode
signal or fire alarm signal to all controllers, therefore disrupting
daily operations.

Threats not only come from network, but also from physical
access. USB is a common built-in connector for microcontrollers.
Many controllers contain USB connectors due to its flexibility and
wide support from peripherals, but the convenience comes at a
cost. Wide support makes the code base of USB driver bloated
and complex and prone to vulnerabilities. USB is a dangerous port.
USB devices include a microcontroller hidden from users. A device
indicates its capabilities through a descriptor stored in the firmware.
It is possible for attackers to reprogram firmware, use a USB flash
drive to impersonate different devices for injecting malware, or for
spying on the system [20]. Alternatively, some USB peripherals have
the ability to use direct memory access (DMA) transferring data to
main memory without operating system supervision. It potentially
gives attackers a chance to modify main memory. Besides, the
majority of OSes support booting from USB drives. When it comes
to PLC, it is a common design for using USB to update system
components, adding new policies, and debugging programs even
loading new OSes. While it makes the administrator’s job easier,
attackers can take advantage of such a path to bypass system-level
security precautions and load malicious programs and boot modified
operating system as [16] has demonstrated. The most well-known
cyber weapon, Stuxnet is believed to have spread through a USB
thumb drive to the BAS [14]. An RS-232 serial port is even worse.
As a legacy port it is still widely supported by PLCs. Serial ports
do not support authentication. Systems often allow remote access
through serial ports [33].

One of the important constraints of BAS is real time. Laboratory
must constantly maintain negative differential pressure under any
circumstance. PLC highly relies on the scheduler of real-time oper-
ating system (RTOS) to regularly execute programs, check sensors
and adjust actuators before deadline. The cost of missing a dead-
line is potential hazards exposures, which is unacceptable. Current
RTOS, however, is designed with the assumption that all programs
work as specified. Only with this assumption the real-time scheduler
can guarantee that all constraints be satisfied, which is hardly the
case for control system like BAS. One reason is the lack of aware-
ness. People tend to believe field devices such as PLCs cannot be
compromised. Therefore security is not an integral part of most
control systems but merely an after thought. “There is no public
security certification process for control system devices and vendors
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are unwilling to share information on security incident,” as men-
tioned at Black Hat 2014 by Stefan Luders, computer security officer
at European scientific research center (CERN) [30]. Attackers who
compromise a process (e.g., temperature control process) in labo-
ratory controller can ceaselessly fork itself and consume the CPU
time of airflow control process by fairly divide it’s share, hence de-
liberately sabotage the real-time constraint. Cyber-Physical Systems
involve multiple controllers cooperating through network. Com-
promised chamber controller can intentionally delay the override
airflow response to laboratory controllers, postpone multiple parties’
communication and make them miss deadline or it can overwhelm
the receiving party with a large number of junk messages.

Although real-time constraint is critical, the highest priority is sta-
bility. BAS is designed to run for decades. Once a BAS is installed,
the cost of upgrade is considerably high and usually unacceptable.
For example, think about the cost and effort of disabling security
systems of airport or subway stations. The stability requirement of
BAS makes the whole system vulnerable to constantly trying attack-
ers. Especially with the dawn of Internet of Things, home owner can
access from anywhere in the world to remotely control lights, door
locks, house temperature, electric appliances, water valves, alarm
system, garage door, the ability to open and close shades and blinds,
or even to turn on music and crank up the volume. While appealing,
it also gives attackers a unprecedented open world. The incident of
the control system at Google Australia office being compromised by
researchers in 2013 shows how serious and realistic such a problem
is [17]. The headquarter uses Tridium’s Niagara Framework which
contains numerous vulnerabilities that allow researchers to obtain
administrative password and access control panel to disrupt the sys-
tem; publicly available web interface also make it trivial to exploit
such vulnerabilities.

Study of software reliability shows that industrial software system
in general contains 2-75 bugs per 1000 lines of executable code [38],
which is considerably higher than normal code. On the other hand,
patching of security vulnerabilities in control systems is difficult and
usually have to wait when maintenance is performed. These issues
make control systems like BAS an attractive target for attackers.
Now in light of the advance of CPS, control systems are highly
automated and digitally interconnected with high-level applications
and Internet. Considering the easy accessibility, poor protection, and
potential benefit the hackers can gain, PLCs have become the low
hanging fruits for cyber attacks. The environment and assumption
of real-time operating system for BAS has changed. We can no
longer confidently assume that all applications running on top of
the OS are benign. For example, with the new setup, a program
with buffer overflow vulnerabilities could possibly allow attackers to
inject malicious code remotely, deceiving the scheduler to plunder
CPU time slots, therefore intentionally starving critical applications,
forcing BAS to violate real-time constraints.

It is well-known that device drivers have error rates 3 to 7 times
higher than other code [10]. In general-purpose OSes, device drivers
contribute to a large percentage of vulnerabilities. It is reasonable for
general-purpose OSes since general-purpose OSes need to support
as many peripherals as possible. Convenience and compatibility are
higher concerns. Besides, for general-purpose OSes, peripherals
are usually keyboards, monitors, hard disks which are relatively
non-critical and device drivers come from various vendors which
is impossible to guarantee the quality. It is the applications such
as browser that casts a bigger threat for users rather than device
drivers. When it comes to industrial control and BAS, however,
the situation has changed. PLCs and NAE usually only need to
support limited number of devices and peripherals. Although the
number is small, they are critical for safety and security of the

whole system since device drivers directly interact with sensors and
actuators. If the device driver is compromised it can easily fool
the OS, control actuators arbitrarily and stealthily. Malware like
Stuxnet demonstrates this possibility [26]. While it is challenging
for application programmers to make sure the applications are high-
assurance by applying methods such as formal verification, it does
place a high demand for such rigorous assurance on the underlying
RTOS. BAS not only requires the OS of PLC to guarantee functional
correctness but also have fault tolerance and attack resilience, which
means the OS of controllers should not crash (guaranteed) and
in case if critical system errors it has certain ways to recover the
system. More importantly, the OS should strive to execute the most
critical applications before the deadline even when malicious apps
are running on the same devices trying to sabotage it. In the case of
laboratory control, this means maintaining negative differential air
pressure, and notifying BAS about failures as soon as possible.

6. SECURE RTOS ARCHITECTURE
To understand how we intend to model and specify the require-

ments that critical applications need to convey to the RTOS, and
why we choose to use a microkernel architecture for the embedded
controller RTOS, it is important to first introduce the basics of the
microkernel architecture.

6.1 Microkernel Architecture
The unique characteristics of a biocontainment facility place a

challenge on the real-time operating system for controllers. None
of the current commercial monolithic systems can confidently guar-
antee to satisfy such high security and stability requirements. As
Tanenbaum pointed out [43], current operating systems are complex
software. The Linux kernel has over 2.5 million lines of code (LOC)
and Windows systems are even larger, which makes it impossible to
formally verify the functional correctness of a monolithic kernel.

By using a layered approach with a formally-verified microker-
nel (referred to as kernel hereafter), we can enforce security and
temporal constraints that could not be enforced using a monolithic
kernel. Since the MINIX implementation is based on one of the
purest forms of the microkernel architecture, we will use MINIX as
an example to explain the architecture.

Kernel’s roles are to provide the process environment and inter-
process communication/synchronization primitives to the processes
(apps) above it. Kernel itself is not a process, but all other soft-
ware modules residing on top of kernel are running as processes.
Each process runs in its own independent address space and can
only communicate with other processes using kernel’s inter-process
communication primitives. Kernel runs in the highest processor
privilege level and all processes running above kernel run in the
lowest privilege level.

In MINIX, the processes running on top of kernel are structured in
three software layers. A process in one layer uses services provided
by those in the layers below it. The top-most layer is the user process
layer. The layer below it is the server layer, which provides system
calls to the user processes. The server layer consists of the Process
Manager (PM), File System (FS), Network server (INET), etc. PM
provides process/memory related system calls such as fork and exec.
FS provides file related system calls, such as read and write. INET
provides TCP/IP services. The lowest software layer is the device
driver layer.

We now compare behaviors of the microkernel OS architecture
and the monolithic OS architecture. In a monolithic OS, such as
Linux and Unix, all OS functions (including interrupt handlers, de-
vice drivers, and system call functions) are implemented as separate
functions in one big OS program, all in the same address space and
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usually run at the highest privilege level. Therefore, potential vulner-
abilities in any function in the OS can allow an attacker to issue any
sensitive operations and could destroy other OS functions. Consider
execution of a system call, which is assumed to be implemented by
a sequence of function calls. When a user process issues a system
call, a software interrupt transfers control to the OS program (in a
monolithic OS) or kernel (in the microkernel). In a monolithic OS,
all functions in the OS are executed on behalf of the user process
and no process switching takes place, as a result no module can
monitor these function calls.

In a microkernel, on the other hand, if the sequence of functions
are implemented by different processes, each such function call/re-
turn will cause a process switching. We counted the number of
process switchings required to complete a read system call onto a
RAM disk drive. Compared with 0 in the monolithic OS, MINIX
requires 12 process switchings. Since process switching is costly,
most general purpose OSes use the monolithic architecture for per-
formance reasons. However, our application of BAS is not CPU
intensive (this will be explained later). In fact, from the security
point of view, the multiple process switchings provide an advantage
in the BAS system! It means that each inter-process communication
and its frequency, data transfer operations across process boundaries,
and executions of sensitive operations, such as I/O operations, all
go through kernel and that kernel can monitor each of these opera-
tions. Furthermore, since kernel has access to the message buffer
contents in the inter-process communication primitives, kernel can
even control which requests (specified in the message) may be sent
to the destination server.

How the functionality of each BAS component is divided into
a separate process must be determined by two factors. From the
performance point of view, it would be better to put more function-
ality into one process, since it would require less process switching.
However, from the security point of view, it would be better to put
less functionality into one process, since process must communicate
with one another more often and the microkernel can control such
traffic in more fine-grained manner.

Consider the following function in our BAS system, involving
three components: a Fire Sensor driver and a Fire Alarm component
on a chamber controller and NAE. Each chamber is equipped with
one chamber controller, and there is only one NAE in a zone. Fire
Sensor Driver periodically senses the fire sensor. Suppose that (1)
Fire Sensor Driver of one chamber detects a fire, (2) it informs
NAE of the fire, (3) then, NAE switches the mode from normal to
DECON and sends requests to the Fire Alarm components of all
chambers, and (4) upon a receipt of the request, the Fire Alarm
component triggers alarm siren and unlocks all the doors to the
chamber. In this scenario, we assume three processes to implement
the above functionality in the following discussions; (1) fire sensor
process which senses a fire and informs NAE of the fire, (2) NAE
process that triggers the DECON mode, and (3) Fire Alarm process
which receives a request from NAE and triggers the alarm siren and
unlocks the doors of the chamber.

6.2 Access Control on Inter-Process Commu-
nication

We will specify the security policy in the form of access con-
trol on inter-process communication. A formal language is used
to specify the following: (1) for each sender process, which pro-
cesses it can communicate with (send messages to), and (2) for
each communication, (2a) which functional services (operations)
the sender process can request, and (2b) how often/seldom each
communication must be issued (communication frequency; that is
the upper- and lower-bounds of communication frequency). For
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example, consider the above fire sensor scenario. The fire sensor
process can send a request only to NAE. The request must be either
“no-operation” or “report fire.” The frequency of the communication
must be in the range between once every 45 seconds (lower bound)
and once every 1 second (upper bound). NAE can send a request
to the fire alarm process of each chamber, among other request
messages since NAE is involved in many tasks, and its operation
must be either “no-operation” or “trigger siren and lock doors.” Its
communication frequency must be in the range between once every
45 seconds and once every 1 second.

Such formal security policy specification is compiled into a table
information (called access control table (ACT)), which is compiled
with the microkernel to be stored in the kernel address space. The
microkernel refers to the ACT to control each inter-process commu-
nication. If a process tries to send a request to another process, the
request is granted only if the ACT has permission information for
the request; otherwise, the request is rejected.

In addition to the access control specification on IPC, we allow
to specify the characteristics of each process, such as the worst
execution time. This information is also compiled into the kernel
address space and the kernel uses the information to monitor the
process behaviors.

6.3 Proxy Based Communication
When it comes to processes from different controllers that need

to cooperate together for a task, the proposed RTOS architecture
distributes security control using proxy-based communication (Fig-
ure 4) to enforce access control on the inter-process communication.
Suppose that a chamber controller has a Fire Sensor process and
a Fire Alarm process, and the NAE controller has a NAE process.
Then, the Fire Sensor process on one chamber controller must have
a proxy for the NAE process, and the NAE controller houses one
Fire Sensor Proxy and one Fire Alarm proxy for each chamber con-
troller. Each process does not directly communicate with a process
on another controller. Instead, it communicates with the proxy on
the same controller using the kernel’s IPC service. Therefore, the
security policy implemented in the form of ACT is enforced among
processes within the same controller. For example, the fire sensor
task sends a “report fire” request to the NAE proxy, which is allowed
according to the ACT.

The proxy then communicates with the senders proxy on another
controller using the inter-controller (network) communication. In
our example, the NAE proxy on the chamber controller sends the
“report-fire” message to the fire sensor (the sender of the original
request) proxy on the NAE controller. This network communication
goes through the INET server, the network driver, and the kernel
(to actually issue sensitive I/O operation on the network device)
and each such communication is also dictated by the kernel with
ACT. The actual network communication will be secured using TPM
(discussed later). When the Fire Sensor proxy on the NAE controller
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receives the “report fire” request, it forwards the request to the NAE
using the kernel IPC. Therefore, the kernel enforces the security
policy in this communication by referring to its ACT.

Once the NAE process receives the request, it sends a “trigger
alarm and lock door” request to the Fire Alarm proxies for all the
chambers on the NEA controller. Each Fire Alarm proxy forwards
the request to the NAE proxy on the corresponding chamber con-
troller. On each chamber controller, upon a receipt of the request,
the NAE proxy forwards the “trigger alarm and lock door” request to
the Fire Alarm process. Then, the Fire Alarm process triggers alarm
and lock all the doors of the chamber. This way, by using prox-
ies, we map global (inter-processor) security to local (in-processor)
security issues to be controlled by each microkernel.

6.4 Temporal Requirements
Biocontainment facilities require the system to maintain negative

differential air pressure between rooms. When the atmospheric
pressure changes, the internal pressures must be modified in real
time. Likewise, when a scientist opens a door, the differential
pressure causes air to rush in from the outside. The door can only
remain open for a bounded time before the pressure would equalize
without intervention. Thus, even the opening and closing of doors
must be carefully choreographed to ensure the safe operation of the
facility.

In a real-time system, a unit of work to achieve a system function
is refereed to as a task. In our Fire Alarm example, a sequence of
executions from (1) detection of a fire by the fire sensor process to
(2) triggering alarm siren and unlocking all the doors by the fire
alarm process is a task. Each task has timing specifications called
release time and deadline.

• release time is the time at which the task becomes eligible for
execution. For example, the time at which (1) detection of a
fire occurs in the above scenario is a release time.

• deadline is the time by which the execution of the task must
complete. In most systems, a deadline is specified relative
to a release time. For example, if (2) triggering siren and
unlocking all doors in the task must have completed in 10
seconds after (1) occurs, the deadline is 10 seconds.

Virtually all modern real-time systems are implemented on a peri-
odic task driver using fixed priority-based scheduling, commonly
referred to as a Rate Monotonic Scheduler (RMS)[29]. In a peri-
odic task driver, each task is scheduled and executed periodically.
If an input that triggers a release of a task arrives at the system
periodically, the period is defined to be the same length as the dead-
line. But in most systems, an input that would trigger a release
of a task does not arrive periodically. For example, in the above
system, fires would not occur periodically. In such a system, the
sensor periodically senses an input (called polling). If an input is
detected, it proceeds the task. If the sensor does not detect an input,
it does not execute any further action in the period. In such a system,
the period is defined to be a half the length of its deadline. For
example, in the above system, if the deadline is 10 seconds, the
period should be 5 seconds; that is, the fire sensor driver should
sense the fire sensor once every 5 seconds. This means that if a
task has a longer deadline, its period becomes longer; that is, the
task is scheduled less frequently and consumes less CPU. Since
the deadlines of BAS tasks are assumed to be longer (because the
inertia of air is large) than those found in other applications such as
automotive and aircraft systems, the BAS system is considered to
be non-CPU intensive, and we have chosen the microkernel based
architecture by focusing on the security rather than efficiency.

In virtually all systems using the periodic task driver with RMS,
the task periods are defined to be harmonic (that is, in any pair of
periods, one is multiple of the other) and in phase (that is, all the
periods start at the same time). In such a system, for a given task set,
if there exists a priority assignment to the tasks which would satisfy
the deadlines of all tasks, the priority assignment based on RMS
will satisfy all the deadlines (such a scheduler is called an optimal
scheduler)[29]. Furthermore, let U = ∑

n
i=1(Ex(Ti)/Pd(Ti)), where

Ex(Ti) is the execution time of task Ti, and Pd(Ti) is the period of Ti.
Then, U <= 1 is the necessary and sufficient condition to satisfy all
the deadlines[27]. If U becomes greater than 1, the system cannot
satisfy all the deadlines

With our proxy based communication, we must carefully consider
in determining a period for a given task deadline. Since network
communications take place only between proxies (not between reg-
ular processes or between a regular process and a proxy) in our
system, this fact may make real-time analysis easier. On the other
hand, challenging factors would include (1) proxies are extra pro-
cesses which will work as an overhead in the total execution time
of the task, and (2) network communications between proxies are
asynchronous and possibly two communicating proxies may run at
different frequencies (periods), which may yield additional delays.
Further studies will be required for temporal analysis of the proxy
based communication.

6.5 Legacy Device Support
Backward compatibility is an important factor for BAS. Building

control system are designed to last decades. There are so many
legacy devices from different vendors in existing system that one can
reasonably assume that those would not be replaced in a foreseeable
future. However legacy devices usually lack security consideration
and therefore are vulnerable to potential threats. The proposed
architecture minimizes threats and provides backward compatibility
through proxies. A controller installs a proxy for a legacy device
it wants to control. The legacy device communicates the controller
using the secure network service. The target of the communication
is the proxy for the device. Then, the necessary security is enforced
by the microkernel. This approach allows the proposed RTOS work
together with old systems, and enforces security constraints on all
communications involving the legacy device.

6.6 Trust Delegation
One of the unique characteristics of BAS is the requirement of

identification and trust delegation. BAS after being set up is consid-
erably stable, barely having external devices being attached on the
network. Different controllers are responsible for different control
tasks, and only communicate with a constant subset of devices. To
prevent unauthorized malicious devices from attaching to the net-
work and spoofing others, BAS demands non-forgeable identities of
each device for communication and authorization. It is only achiev-
able with OS level enforcement and hardware support. One of the
well-known technologies for building hardware support identifica-
tion is Trusted Platform Module (TPM). TPM is a cryptographic
coprocessor chip designed by Trusted Computing Group (TCG)
that leverages hard-to-alter characteristics of hardware cryptogra-
phy capability designed to address the problem of lack of trust in
electric devices and to provide evidence for system status. TPM
has been used for different purposes, including providing uniquely
non-forgeable identify for devices and applying measured boot. It
provides various cryptographic functions and secure data vault for
key storage that guarantees the private key would never leave the
device without physical tampering. TCG defines specifications for
TPM driver and key management.
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TPM suits the nature of BAS for building a chain of trust for all
components, from low level hardware BIOS, Unified Extensible
Firmware Interface (UEFI) to high level applications, and providing
verifiable evidence for remote attestation to prove that the device
has been intact since last time it was booted. Besides, TPM offers
different cryptographic algorithms that can be used to encrypt net-
work sessions, build communication channels on top of BACnet,
Modbus and other legacy protocols, verify application certificates,
and provide evidence for secure application loader. This security
reinforcement not only prevents devices from being spoofed, but
also gives BAS applications the capability to refine access and com-
munication privilege at system level.

6.7 Software Architecture
With our investigation and scenario analysis, we propose a micro-

separation kernel based secure RTOS architecture Our proposed OS
architecture is based on MINIX, a well-known, ever-evolving stan-
dard microkernel based OS. MINIX emphasizes on stability. The
latest version is MINIX 3 which targets embedded devices. MINIX
kernel only provides a tiny portion of OS critical functionalities such
as real-time scheduler, process control blocks (PCBs), interrupt han-
dler, IPC, and system clock. In our proposed architecture, besides
the components of current MINIX kernel with built-in separation
and self-verification enhancements, we include direct TPM support
in the kernel space, which empowers the kernel with cryptographic
computation capability and the strength of verifying other compo-
nents before loading them. Between kernel and other components
is the security kernel/user interface. Security kernel/user interface
offers TPM’s privileged APIs to user space processes. Typical us-
age includes but is not limited to encrypting/decrypting network
sessions, querying device identity and status, answering remote at-
testation, and most importantly, helping Secure Process Manager
(SPM) to achieve whitelist/blacklist binary loading and monitoring.
Such an architecture makes sure that every component on top of
kernel can be verified and authenticated by kernel, while the kernel
itself is verified and measured by security loader or trusted loader
and hardware (e.g., UEFI, TPM) which can be audited by remote
servers, therefore extending trust from bottom to the top.

On top of security kernel/user interface are isolated system servers
including device drivers, the file server, inet server, secure process
manager (SPM), and building automation server (BAS), which is
responsible for communication with analog devices. Secure process
manager is an enhanced version of MINIX 3 process manager. In
MINIX, process manager is responsible for loading/forking/killing
processes, message passing and synchronizing processes’ status
with Kernel. SPM is enhanced with separation and verification
capability. With the help of security kernel/user interface, SPM
verifies applications and reinforces application separation by setting
up communication boundaries, virtual memory, restricting privi-
leges, as well as limiting resource usage. BAS server guarantees to
dispatch query and response of analog devices in real time at the
system’s best effort. BAS works tightly with analog device driver. It
monitors and transfers analog signals into proper OS data structure
and forwards messages between applications and device drivers.
On top of the operating system are applications and corresponding
proxies. They are scheduled according to their priority. Proxies
implement network policies and filter out potential malicious traffic
before passing to applications.

6.8 Case Study: Airflow Control in the Pro-
posed Architecture

Airflow control task is a good example to demonstrate how the
proposed RTOS architecture works in a biocontainment facility sce-

nario. In a laboratory, airflow control is one of the most critical
functions to prevent cross-contamination. Maintaining proper air-
flow control requires multiple devices cooperating together, which
makes it vulnerability to potential cyber attacks.

Figure5 illustrates each step of the task. Three types of controllers
are involved in the airflow task; the lab controller for each laboratory
and the chamber controller in the chamber with in the same zone and
the NAE controller. The figure only shows the processes involved in
the airflow task, and does not show the microkernel, the device driver
processes, and the OS server processes. The solid arrows represent
IPCs that are controlled by the microkernel by referring to the ACTs,
and the dotted arrows represent network communications which is
encrypted with unique device identity provided through TPM and
process information assigned by kernel. In the Airflow control task,
two independent but related sub-tasks are executed concurrently; one
sub-task monitors the differential pressure between each laboratory
and the chamber, and another regulates the airflow into and from
each laboratory.

In the first sub-task, the Differential Pressure Sensor process peri-
odically sends the differential pressure between laboratory and the
chamber to the Differential Pressure process (via IPC denoted by
a). The Differential Pressure process sends the differential pressure
data to the NAE process for logging. This communication is done
by the following sequence of IPC and Network communications; (1)
the Differential Pressure process sends the data to the NAE proxy
via an IPC b, (2) the NAE proxy sends the data to the Airflow Con-
trol Proxy for this chamber on the NAE controller via the network
communication c, and (3) the Differential Pressure proxy for the
chamber forwards the data to the NAE process d. When the NAE
process receives the data, it logs the data. The NAE process also
monitors the received data and if it detects that the differential pres-
sure has been below the predefined threshold value for a certain
length of time (which is an unacceptable situation), the NAE pro-
cess changes the operation mode of the zone from the normal to the
DECON mode. The NAE process broadcasts a request to all the
related processes in the zone, commanding to switch to the DECON
mode. In our scenario of the Airflow task, the request command is
sent to the Differential Pressure process of the chamber and the Air-
flow Control process of all labs in the zone via their corresponding
proxies e, f, h, i, j.

In the second sub-task, the Airflow Sensor/Actuator process peri-
odically monitors the airflow to/from the laboratory and reports the
airflow to the Airflow Control process (IPC denoted by 1). The Air-
flow Control process communicates with the door sensor driver in
the device driver layer (not shown in the figure) to check if the door
is open. If the door is closed (when a big change in the airflow is
not expected), the Airflow Control process calculates the difference
between the appropriate exhaust airflow and the supply airflow, and
sends a command to the Airflow Sensor/Actuator process to adjust
the airflow (denoted by 2). If the door is open (when a big change
in the airflow may occur), the Airflow Control process alone may
not be able to maintain the negative differential pressure relative to
the chamber. Therefore, the Airflow Control process reports this to
the Differential Pressure process in the Chamber Controller. This is
done by the sequence of IPC and Network communications denoted
by 3, 4, 5. As described above, since the Differential Pressure pro-
cess receives the differential pressure data among the chamber and
all the labs, the process calculates the necessary airflow of the Lab to
maintain the required negative pressure and sends a command to the
Airflow Control process in the Lab controller, commanding to adjust
the airflow to the lab appropriately. This is done by a sequence of
communications among the processes and proxies denoted by 6, 7,
8. Upon a receipt of the command, Airflow Control process sends
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Figure 5: Airflow Control with Secure RTOS

a command to the Airflow Sensor/Actuator process to adjust the
airflow (denoted by 2).

In the above scenario, all IPC communications are regulated by
the microkernels on the associated controllers using the ACTs, and
all the network communications are assumed to satisfy real-time
requirement.

7. POTENTIAL ATTACKS AND MITIGATIONS
WITH SECURE RTOS

In this section we discuss various potential attacks of the scenario
described above and explain how the proposed RTOS architecture
can help mitigate these threats.

7.1 Attack on Software
As discussed above, controllers in BAS have quite a few control

tasks that involve multiple processes. It is reasonable to assume that
some of them might contain vulnerabilities such as buffer overflow,
memory leakage, etc. that would allow attackers to gain remote
access in the local controllers. For example, the attackers might
be able to take total control of temperature control task and try to
take the system down from there. The false data injection attack
is a common method for trying to compromise peer processes and
escalate privilege. Once attackers gain access to a controller by
compromised processes, they might try to send message, request
system call to access the local database, or to turn on the DECON
flag, etc. However this type of attack can be effectively detected
and prevented by using microkernel architecture. In microkernel
architecture all the inter-process communications go through kernel
message passing. Although it might involve many context switches
and make the system slower than a monolithic kernel, the benefit
is that it natively separates processes into independent modules.
Kernel theoretically monitors all communication and can control
the communication flow by policies. For example, the temperature
control process cannot request conversation with database service
and the DECON control process; the kernel will simply reject this
communication attempt. On the other hand, microkernel architec-
ture can help prevent attacks from spreading through the network.
Each control task can only communicate with related processes on
other controllers through a proxy. In the worst scenario, even the
temperature control process is totally compromised through network,
it is very unlikely that the threat will impact more critical control
loop such as airflow control and differential control.

In a controller there are multiple processes sharing the same
hardware resources simultaneously and they all have real-time con-
straints. Thus, one compromised process can potentially sabotage
other processes on the same controller by conducting resource con-
sumption attack that consumes memory space as much as it can or
hogs CPU utility by forking multiple threads. The proposed archi-
tecture can help avoid this type of attack by modeling each process’s
running characteristics, and the kernel can detect deviation from
the characteristics and stop the attack. Microkernel architecture has
good separation. All processes are running in separate virtual mem-
ory spaces. Therefore even if a malicious process tries to consume
memory it will only exhaust its own quota. On the other hand, the
kernel prevents a specific process from exhausting CPU capacity by
assigning each process a share of time slots based on the process’s
running characteristics. When the usage is more than it is assigned
the specific process will be preempted, therefore only itself will
miss its deadline.

Other threats for modern OS include virus, backdoor, and rootkit,
etc. For viruses that take advantage of application process vulnera-
bilities, they might spread themselves through network. Due to the
communication restriction between controllers enforced by the ACT,
the impact will be limited. For viruses due to system process vulner-
abilities, they might have a severe impact. However, in microkernel
architecture kernel is the only thin layer running in the privilege
mode. This minimizes the risk to as low as possible. Moreover,
the capability of formally verifying the kernel and related modules
dramatically reduces the number of such vulnerabilities. Even if a
process in the controller is compromised by attackers, the attackers
can only modify current process’s context. To execute unauthorized
binary (such as, plants backdoor and sensitive I/O operations) and
communicate with other processes, it requires the kernel support,
which is strictly regulated.

7.2 Network Attack
The biggest threat for industrial control system is from networks,

either through unguarded Internet access or wireless interfaces. One
popular attack is the deception attack, which represents a type of
attack that try to gain control of controllers through unauthorized
third devices. For the scenario described above, attackers might
attach arbitrary devices on the control network and impersonate
the chamber controller for deceiving the laboratory controllers into
accepting fake override command. Similar strategy might be use to
forge a fire alarm signal on behalf of the NAE for trying to trigger the
amble strobe in a laboratory therefore conveniently lock down the
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whole zone. With the proposed RTOS architecture this type of attack
would not be a problem. The proposed architecture enforces devices
with unforgeable identities supported by TPM. Controllers would
only be able to negotiate and initialize conversations with each other
if they are authorized to communicate by presented cryptographic
evidence. Thus prevent unauthorized conversion at the first place.

Another type of well-known attack is the replay attack. Similar
to deception attacks, replay attacks intend to manipulate receiving
controllers by using spoofing messages on behalf of others. The
difference is that instead of creating arbitrary messages, replay
attack collects legitimate control message on the network, tweaks
it and send it later. This attack might happen, for example due
to communication protocol deficiency. In the scenario described
above, a malicious attacker might keep sending outdated override
commands to the laboratory controller and deviate the laboratory
controller to cause positive pressure. However, the proxy-based
design should be able to prevent this type of attack. The benefit of
proxy-to-proxy communication separate control loop with network.
Because of the separation, proxies can be customized according to
different requirements of the process it serves. In general proxies
in different controllers can keep track of the session number, define
the rate of communication between different devices, guarantee the
freshness of each override command.

The same protection applies to denial of service (DoS) attack
too. Attacker might simply sabotage the control system by applying
denial of service attack or stressing control network with DoS attack
to camouflage more stealthy attacks. Either the DoS attack is from
an unauthorized device or through a compromised one, the effect
will not create more damage than jamming the network therefore,
delays cooperation. Although this is bad enough for a real-time
control system, there is not much the embedded controllers with
limited resources can do. The solution most likely requires network
level detection and prevention mechanisms. However, all control
processes that require network cooperation should enforce limited
time for expecting responses. With the kernel monitoring the upper
and lower bound of communication frequencies of processes, the
controller can guarantee that even under DoS attack, it still can
maintain local control loop independently, thus help minimize the
damage.

8. RELATED WORK
CPS research is still in its early stage. As Madhukar, Eric et al. in

[3] point out there are certain security challenges such as measuring
confidentiality, trust management, etc. There are decent amount
of researches on CPS control theory and analysis of different type
of attacks, for example, [9] identifies and defines the problem of
secure control; [48] assesses vulnerabilities and categorizes CPS
attacks. However, there are limited number of researches propose
systematically security solution for CPS. When it comes to Building
Automation System, the research is mainly focus on security of
SCADA system. In [21] Wolfgang, Georg et al. conducted a inves-
tigation of BAS communication system, in which they emphasized
the important of formal specification. In [34] the author presented
an approach of developing safety and security related application of
BAS.

On the other hand, microkernel architecture has been a popular
topic in recent years once again. Several companies and academic
research groups are dedicated to designing more secure OS. The
most outstanding microekernel is MINIX 3. MINIX 3 is a Unix-
like operating system that focuses on stability and fault tolerance.
MINIX 3 is built on top of a pure microkernel with under 4000
lines of executable code. The superior contribution of MINIX 3
is that it is the only operating system so far that has each server

and each device driver running as a separate user-mode process,
and its capability to recover failures that normally would be fa-
tal [15]. Another progress on microkernel architecture is the Secure
embedded L4 [23] developed at OKLabs and NICTA. SeL4 is the
most advanced member of L4 microkernel family. It is known as
the first formally verified microkernel that is verified using theorem
prover Isabelle/HOL [22]. SeL4’s implementation is mathematically
proved functional correct against its specification. It is a milestone
in system reliability research and it proves that formal verification
of microkernel is practical. Although SeL4 is exciting but it is still
an experimental research project and SeL4 is designed as a hyper-
visor rather than a full stack OS. Another related research project
is Muen Separation Kernel [7]. Muen is developed in Switzerland
by the Institute for Internet Technologies and Applications (ITA)
at the University of Applied Sciences Rapperswil (HSR). It claims
as the first open source microkernel that has been formally proven
to contain no runtime errors at the source code level. Muen is a
separation kernel for X86/64 platform that is developed in SPARK.
However, Muen is still an early research concept project and it is
not suitable for embedded system with real-time requirement.

Several companies are dedicated to designing more secure RTOS.
One major player of embedded real-time operating system develop-
ment company, Wind River Systems just has updated its well-known
VxWorks embedded RTOS for the emerging network-connected
embedded systems of Internet of Things [18]. It is based on modular
design that allows adding and upgrading without modifying kernel.
It features MMU-based memory protection and separate user mode
and kernel mode [11]. One of the major competitors in RTOS of
VxWorks is QNX [4] from BlackBerry. QNX is a commercial Unix-
like RTOS that is mainly used on Internet routers, Remote Terminal
Units (RTUs) and in-car infotainment systems. QNX Neutrino
RTOS is microkernel based that supports MMU-based memory
management with kernel-application and application-application
protection and is certified to Common Criteria ISO/IEC 15408 Eval-
uation Assurance level (EAL) 4+ [39]. Since both VxWork and
QNX are commercial close source RTOS, availability is limited.
However according to Koscher, Karl, et al. [25] the protection mech-
anism seems still limited. On the other hand, these trend shows that
RTOS with more built-in security mechanism is highly on demand
and microkernel-based architecture for secure RTOS is a promising
direction.

9. CONCLUSION AND FUTURE WORK
We conduct empirical research and investigation of real-life biose-

curity laboratory, as an example of building automation system se-
curity and safety. Through our studies, we propose a novel secure
real-time OS architecture that is specially designed to suit critical
control devices for building automation systems, that is based on
microkernel structure, with proxy-based policy enforcement, and
TPM supports. We believe that the proposed architecture would help
address fundamental issues of embedded operating system, such as
lack of identity, and prevent various popular attacks by default.

The next step of this work is to design and experiment a new
scheduling method that is applicable to the proposed architecture
specifically address the co-shceduling of processes at different con-
trollers for the same tasks to meet the real-time constraint, and
implement the RTOS. The challenge of this work is to formally
specify OS primitives and formally verify the implementation to
make sure that it complies with the specification and can be guaran-
teed functional correctness. Eventually the RTOS would be formally
verified in source code level and test the prototype OS in a practical
BAS environment for proof-of-concept.
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