
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 3457

Android Malware Detection with Weak Ground
Truth Data

Jordan DeLoach and Doina Caragea

Department of Computer Science

Kansas State University

{jdeloach,dcaragea}@ksu.edu

Xinming Ou

Deptartment of Computer Science and Engineering

University of South Florida

xou@usf.edu

Abstract—For Android malware detection, precise ground
truth is a rare commodity. As security knowledge evolves, what
may be considered ground truth at one moment in time may
change, and apps once considered benign turn out to be malicious.
The inevitable noise in data labels poses a challenge to creating
effective machine learning models. Our work is focused on
approaches for learning classifiers for Android malware detection
in a manner that is methodologically sound with regard to the
uncertain and ever-changing ground truth in the problem space.
We leverage the fact that although data labels are unavoidably
noisy, a malware label is much more precise than a benign label.
While you can be confident that an app is malicious, you can
never be certain that a benign app is really benign or just
an undetected malware. Based on this insight, we leverage a
modified Logistic Regression classifier that allows us to learn
from only positive and unlabeled data, without making any
assumptions about benign labels. We find Label Regularized
Logistic Regression to perform well for noisy app datasets, as well
as datasets where there is a limited amount of positive labeled
data, both of which are representative of real-world situations.

I. INTRODUCTION

The area of Android malware detection has recently evolved

to increasingly use machine learning [1], [6], [24]. Of critical

importance to a machine learning approach, before choosing

a classifier or extracting features, is the creation of datasets

and the labeling of individual examples as positive (malware)

or negative (benign). High quality ground truth is essential to

a successful machine learning approach. Low quality ground

truth, on the other hand, can make the problem of finding an

effective decision boundary to differentiate a malicious app

from a benign app much more difficult.

Traditional supervised machine learning algorithms require

not just high quality ground truth, but rather a large amount of

high quality ground truth. When only a small amount of high

quality ground truth is available, standard semi-supervised

learning approaches (e.g., expectation maximization or self-

training), which can make use of unlabeled data in addition

to labeled data, have been successfully used [3]. Similar

to the effect on supervised learning, noisy labeled data can

cause semi-supervised learning classifiers to shift away from

the correct decision boundary [7]. As an alternative to stan-

dard semi-supervised learning, Ritter et al. [17] recently pro-

posed a “weakly supervised” approach (a.k.a., one-class semi-

supervised learning), which learns from a small amount of

high quality positive data only and large amounts of unlabeled

data, by regularizing the label distribution of the unlabeled data

towards a user-provided expected distribution.

High quality ground truth is a rare commodity and ex-

ceptionally difficult to obtain for Android malware detection.

Benign labels are usually more imprecise than malware labels,

in the sense that a new app that is originally labeled benign

might later have its label changed to malware. Given these

facts about the ground truth in Android app security, our

goal is to research the effectiveness of the weakly supervised

approach proposed in [17], called Label Regularized Logistic

Regression, for the problem of accurately identifying Android

malware.

We experiment with different amounts of noise, different

amounts of labeled data, and different label distributions.

Our working hypothesis is that the one-class (positive only)

semi-supervised approach performs better than the standard

supervised learning approaches which would use some amount

of low quality ground truth.

We summarize our contributions to the field in the following

three points:

1) We are the first group to experiment with applying a one-

class semi-supervised approach that uses only positive

data together with unlabeled data in the Android malware

detection domain.

2) We discuss how a one-class semi-supervised approach

fits with the specific intricacies of the Android malware

domain.

3) We provide extensive analysis of inherent flaws in current

techniques for ground truth on Android, and discuss how

those flaws can be best remedied with one-class semi-

supervised learning approaches.

II. BACKGROUND

A. Ground Truth

Attempting to concretely label an app as benign or malware,

and separating a set of apps into benign and malicious apps

is a difficult task. Even for the Google Play Store1, accurately

labeling an app as malicious remains a problem as Google

Play Store has been shown to have a relatively substantial

1https://play.google.com

3458

amount of malware. Reported levels of malware in the store

vary anywhere from Google’s self-reported less than 1% [9] to

7% or higher [5], [11]. Either way, the amount of malware in or

attempting to get in the app store is drastically growing [16].

Be it Google Play, Amazon Appstore, or Android malware

repositories, app sources are inherently noisy, and some means

of ground truth preparation are necessary to separate a base

dataset for training a classifier.

In order to create ground truth, there are four main existing

techniques, each with varying levels of accuracy [10].

1) Some attempt to manually label each instance as either

benign or malware. While highly accurate, this approach

does not scale beyond hundreds or thousands of apps to

the millions that exist in the wild. Zhou et al. [25] did an

in-depth analysis and manually labeled more than 1,200

Android malware to conduct their study.

2) Some simply take the instance labels provided with a

dataset, e.g. considering all apps or the popular apps in

the Google Play Store as benign, and those from malware

repositories as malicious. This often results in many false

positives and false negatives. MAST [4] used Google Play

apps and two malware repositories to label apps as benign

and malware, respectively. Wu et al. [23] considered the

apps collected from a Chinese app market as benign apps

while utilizing the VirusShare dataset as malware apps.

3) Some utilize a single anti-virus product to determine the

label, potentially biasing classifier performance towards

what an individual anti-virus believes to be malware.

4) Others attempt to verify ground truth by submitting apps

to VirusTotal [21]. VirusTotal is a service that takes

malware binaries and runs them against a variety of dif-

ferent anti-virus products, over 54 at the time of writing.

From there, most approaches determine a threshold, and

consider an app to be malware if the number of anti-

virus products that flag it as malware is greater than the

threshold. Drebin [1] labeled an app as malware if 2 out

of a select 10 anti-virus products flagged it as malware.

Roy et al. [18] used a threshold of 10 out of 54.

While the fourth option has been shown to perform the

best of the four, there exist inherent problems in using anti-

virus solutions, specifically with newer malware. As noted

by Kantchelian et al. [10], anti-virus products tend to prefer

false negatives to false positives, thereby erring on the side

of over-labeling as benign and under-labeling as malware.

This has been verified by Chen et al. [5] where there were

found to be more than 34,000 malicious apps missed by the

majority of VirusTotal scanners. While it is nice that anti-

virus products do not over-assert malware claims that could

impair the popularity of an app, many apps will receive no

flags as malware in the instance that the anti-virus is uncertain.

Furthermore, anti-virus solutions are based upon signature

detection. Security experts must first find and craft a signature

before an anti-virus can detect the malware, which means that

when a new strain or family of malware comes out (e.g., zero-

day malware), the anti-virus will often label it incorrectly as

benign. These insights lead us to believe in an imbalance in

the precision of anti-virus class labels, with a malware label

being comparatively more precise than that of a benign label.

B. Supervised Learning

Given a set of ground truth labeled examples of both

malware and benign apps, a traditional supervised classifier

will attempt to learn the differences between the positive and

negative classes by identifying an implicit or explicit decision

boundary between the two. The classifier relies heavily upon

the provided labels for the examples both when training

and testing. In training, the labeled examples are critical

for creating an accurate training space and identifying an

accurate decision boundary. In testing, a mislabeled app would

penalize the performance metric of a classifier if the classi-

fier guessed the correct label. In supervised approaches the

presence of mislabeled examples in the training set can easily

and substantially degrade classifier performance by leading

to an inaccurate decision boundary between the two classes,

and thus causing inaccurate predictions. Similarly, mislabeled

examples in the test set will negatively affect the performance

even when the classifier produces accurate predictions.

C. Semi-supervised Learning

Semi-supervised learning, as opposed to supervised learn-

ing, attempts to train from a small amount of labeled together

with unlabeled data. The benefits of semi-supervised learning

come from the fact that when providing ground truth, you

are not constrained by a binary model of class labels. Having

binary labels means that an app is either positive, negative,

or excluded from the dataset. A semi-supervised approach, on

the other hand, is able to leverage unlabeled data to augment

the existing limited amount of labeled data and learn a better

classifier.

There are various approaches to semi-supervised learning,

for example, expectation maximization (EM), self-training

(ST) and co-training (CT). Such approaches use both positive

and negative examples as labeled data, together with unlabeled

data. As opposed to semi-supervised approaches that use

both positive and negative data, Label Regularized Logistic

Regression (LR-LR) [13], [17] is an approach which allows

us to learn from positive examples as the only set of labeled

data. LR-LR uses the log probability over just the positive

class and regularizes the predicted labeled distribution of the

unlabeled data towards a constant provided by an expert,

where the constant represents the expected distribution of

positive apps in the unlabeled dataset. Experimental results in

[17] suggested that LR-LR performs better than a modified

one-class EM, where the expected distribution of positive

apps is used as prior. We also experiment with LR-LR as

a one-class semi-supervised classifier, given the difficulty in

accurately labeling negative (benign) examples in the Android

app security domain.

3459

III. METHODS

A. Logistic Regression

Logistic Regression [15] is a linear model (classifier) that

uses the logistic function to find the probability of a given

feature vector, x, belonging to a certain class, y, given a vector

of weights, θ, as follows:

p(y = 1|x) = 1

1 + e−θ·x (1)

The optimization function, with L2 regularization is:

O(θ) =
N∑
i

log pθ(yi|xi)− λL2 ∑
k

θ2k (2)

where N is the number of examples in the training set. The

L2 regularization is a standard method to balance between

maximizing the log likelihood probabilities of the model and

achieving a simpler model. The goal of having a simpler model

will also lend itself to a model that generalizes better, and is,

thus, more applicable on other datasets in the same domain.

B. Label Regularized Logistic Regression

For our work, we utilize Label Regularized Logistic Re-

gression (LR-LR), which is a variant of the expectation

regularization for Logistic Regression [13]. This method was

applied for detecting tweets related to certain intrusion events

using a small amount of positive seed instances and a large

number of unlabeled instances [17]. The benefit of LR-LR

stems from the fact that it only trains on positive instances

and unlabeled instances.

As such, the optimization function for LR-LR, shown in

Equation (3), is similar to the Logistic Regression with L2

Regularization with two modifications. First, the Log Likeli-

hood function (first term) is only calculated over the Np pos-

itive labeled (Lp) examples. Second, the Label Regularization

term (second term) is added to regularize the estimation of

class distribution between positive and negative instances in

the unlabeled dataset. In the equation, p̃ is an expert estimation

of the distribution of the positive examples within the unla-

beled dataset, and p̂θ is the model’s posterior predictions on the

unlabeled data. The Kullback-Leibler (KL) divergence is used

to find the difference between the distributions, multiplied by

the regularization constant, λU . As the function is optimized,

the KL-divergence is minimized, thereby bringing the posterior

predictions on unlabeled data into line with the expert’s

estimation of the true distribution.

O(θ) =

Np∑
i

log pθ(yi|xi)− λUD(p̃||p̂unlab
θ)− λL2 ∑

k

θ2k (3)

The gradient for the Label Regularization term to be opti-

mized is:

∂

∂θk
D(p̃||p̂θ) = 1

Nu

(
1− p̃

1− p̂θ
− p̃

p̂θ

)
∗

∗
Nu∑
i=1

pθ(yi = 1|xi)(1− pθ(yi = 1|xi))xi,k

(4)

The gradient shows that the more certain (closer to 0 or

1) the estimation for an individual instance, pθ(yi = 1|xi),
the less it will impact the gradient and thereby change θ. The

optimized θ represents a decision surface where p̂θ matches

the expert provided p̃, and most cleanly separates the positives

and the negatives that exist in the unlabeled data.

C. Applications in Android Security

The reason we use LR-LR in our study is because of

the uncertainty stemming from weak ground truth data. As

noted by Kantchelian [10], most anti-virus vendors tend to

bias towards minimizing false positives at the expense of

introducing false negatives. In our case, the benign dataset, as

scanned by VirusTotal, could likely include apps whose labels

in the coming weeks or months could change to malware.

Even then, many apps will go undetected by the majority

of VirusTotal scanners [5]. Some approaches [10] will only

include apps that have been labeled as benign for a set amount

of time, attempting to ensure label certainty by delaying

introduction into the training dataset.

We believe that LR-LR is a superior option as it allows

us to include the maximum amount of data available while

decreasing the probability of training over incorrect labels.

Instead of attempting to learn from benign apps whose labels

could change with time, we instead use LR-LR to learn

from positive and unlabeled instances, thereby making us

more resilient to those malicious apps that VirusTotal scanners

may have missed. As studied previously [10] and verified in

Section IV-B, the number of apps whose label is changed

from malware to benign, or anti-virus false positives, is excep-

tionally small. Thus, the precision of the anti-virus products

(Precision = TP
TP+FP) for malware is exceptionally high,

while the precision of benign apps is not nearly as high.

Therefore, the only data we can be highly certain of are our

malware (positive) examples.

While uncertain of the benign labels, the ability to include

these instances in LR-LR as unlabeled examples provides us

the ability to introduce additional data that will help in finding

an optimal θ as described previously. This is preferable to

single-class anomaly detection approaches that only train over

positive data. Single-class classifiers, like one-class SVM, have

been shown to not perform as well as LR-LR, namely due

to the smaller amount of data available to the classifier for

training [17].

IV. EXPERIMENTAL SETUP

A. Base Data Set

For our experiments we utilized over a million Android apps

from a variety of sources. The bulk of our apps were from

the Google Play Store via the PlayDrone project [20]. Ad-

ditionally, we collected 35K malicious apps from VirusShare

and 24K malicious apps from Arbor Networks. We verified

the authenticity of all labels in the manner described in the

following section.

After collecting our base app set, we extracted semantic

features mainly relating to permissions, APIs, and intents

3460

utilized by the application. APIs can be strong indicators

of potential maliciousness. For instance, if a malicious app

wants to collect the user’s GPS location, they would have to

leverage the API by calling the getCellLocation function on the

TelephonyManager class. Likewise, to access certain critical

APIs, Android requires that an app garner explicit permission

from the user. Those permissions are listed in a metadata file

in the APK, and to call the GPS API, an app must have the

ACCESS FINE LOCATION permission. Finally, intents can

be used to communicate between apps and with the underlying

system. An intent we looked for in the manifest file and

used as a feature was ACTION PACKAGE INSTALL, which

attempts to use the Android OS package installer to install an

APK. The presence of these types of permissions, APIs, and

intents is required in the code for them to effectively execute

their malicious mission and, hence, make strong features that

together can show patterns that help a classifier to decide if the

app is malicious or not. For more discussion of the feature set

we utilize and the rationale behind it, see [18], which leverages

the same set.

To extract these features, we utilized APKTool 2 to decom-

pile and perform string searches for these APIs, permissions,

and intents. As feature extraction can be on the order of around

a few seconds per app, for over a million apps this would

take several weeks. As such, we utilized a High Performance

Computing Cluster to parallelize up to hundreds of cores at a

time to speed up the feature extraction process.

B. Label Preparation

As noted in Section II-A, having accurate ground truth is

critical to creating a successful machine learning approach.

Not only does accurate ground truth improve classifier perfor-

mance [18], it also ensures that classifiers built would perform

accurately on real world data. To determine a label for each

app in our dataset, we submitted the MD5 checksum of the

binary to VirusTotal [21] and retrieved the count of anti-

virus solutions flagging it as malware. We collected these

reports for each app in our dataset both in April 2015 and

in March 2016. We stored the feature vector along with both

its 2015 and 2016 labels in a MySQL database, allowing

us to dynamically create and vary datasets along different

label confidences and years. Unless otherwise specified, we

used the 2016 labels for our experiments. For determining a

label, we define a high-confidence positive app as an app that

has 10 or more VirusTotal anti-virus solutions marking it as

malware. For the benign label we require that zero anti-virus

solutions have marked it as malware. We note that between

our 2015 and 2016 crawls of the anti-virus reports, 1682 apps

changed labels, with 1681 having a label change from benign

to malware and 1 changing from malware to benign. We note

this matches the intuition provided in Kantchelian [10]. Apps

that exist between the realm (e.g., less than 10 and more than 0

malware flags), are not used as we seek to have a clean control

dataset. We seek a clean dataset so that we can effectively both

2http://ibotpeaches.github.io/Apktool/

test the classifier accuracy as well as introduce noise, neither

of which would be possible with a high amount of accuracy

if the middle, uncertain apps were included.

C. Dataset Noise
Throughout the experiments, we utilize a concept of label

noise. As discussed in the previous section, we attempt to
leverage ground truth to create as pure a dataset as possible.
We do this so that we can systematically introduce noise in
a measurable way, representing the noise that is inherent in
the dataset due to poor ability to construct ground truth and
the inherent inaccuracies in anti-virus software discussed in
Section II-A. We represented this by artificially introducing
a certain number of positive apps in the unlabeled set, given
that it is much more common for apps to be mislabeled as
negative, when actually positive, than the other way around.
Specifically, if we denote by Up the set of positive apps to be
injected in the unlabeled dataset, and by Un the set of negative
apps in the unlabeled dataset, then

|Up| = noise ∗ |Un|
1− noise

(5)

where noise is a parameter manually set, which represents the

fraction of positive apps we place in our unlabeled set.

D. Spark

For conducting our experiments on a large dataset, we lever-

aged Apache Spark. Spark is a platform for large-scale data

processing. Similar to MapReduce, Spark excels in distributed

computing. Spark, however, is more effective for many types

of data processing, including machine learning, due to the fact

that its architecture focuses on in-memory computation, which

is critical due to the massive size of the dataset we are working

with. Thus, for performance reasons and ease of modification

we chose Spark, and more specifically, MLLib as our machine

learning framework of choice. We implemented Label Regu-

larized Logistic Regression as a variant of the MLLib-provided

Logistic Regression using L-BFGS optimization. Furthermore,

we leveraged Spark SQL to dynamically create and vary

different selection criteria for creation of experimental training

and test sets. Our code implementation is freely available on

Github for others to build upon3.

E. Parameter Tuning

We have three main constants in the LR-LR optimization

function that we tuned for best performance. To find the best

values for the two regularization parameters, we performed

a grid search over values of λU and λL2

to find the values

that result in the highest area under Precision-Recall curve

(auPRC). These results can be seen in Figure 1. For λU ,

the parameter for the label regularization term, we used

λU = 1, as verified in Figure 1. For λL2

, the parameter for L2

regularization, we used Spark’s default value of λL2

= 0.0,

however this was verified in our parameter tuning. We note

that our findings for the best λU and λL2

are quite different

than in previous works [13], [17] that suggested much higher

values for both parameters. Finally, we varied p̃, the expected

3https://github.com/jdeloach/mlbSparkExperiments

3461

Fig. 1: LR-LR Performance at varied λU and λL2

.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4 10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
u
P
R
C

λL
2

λU

a
u
P
R
C

distribution between positive and negative in the unlabeled

dataset, per experiment, as it will be seen in experiments.

F. Supervised Baseline Algorithms

We compare the one-class semi-supervised approach against

the default Spark implementations of Naı̈ve Bayes, Logistic

Regression, and Support Vector Machines (SVM). We choose

these specific classifiers as they are commonly used in the

Android security machine learning space and we wanted to see

how they will compare against the one-class semi-supervised

approach, LR-LR. The supervised algorithms use the high

quality positive data that the semi-supervised approach is

using as positive examples, and the noisy “unlabeled” data

(which contains some positive instances) as negative examples.

Logistic Regression provides the most direct comparison with

LR-LR. The only distinction between Logistic Regression and

LR-LR is the fact that LR-LR does not make use of noisy

negative data, as the Logistic Regression does. Instead, LR-

LR is using the noisy negative data as unlabeled data to

regularize the classifier derived from positive-only data. SVM

is an effective, state-of-the-art classifier, but generally needs

extensive tuning for achieving best results. We do not tune

SVM and only use the default Spark implementation.

G. Evaluation Criteria

For our evaluation criteria, we leverage the area under

the Precision-Recall curve (auPRC). As noted for largely

imbalanced data sets [8], and verified for Android security

data sets [18], auPRC is a better metric due to the large

imbalance between benign and malicious apps in the dataset.

Furthermore, we leverage 5-fold cross-validation for all of our

experiments. Cross-validation allows us to incrementally train

and test on all instances in the dataset and thus measure the

generalization ability of the classifiers across the entire dataset.

Additionally, we utilize the F1-Score in one experiment, and

discuss the rationale behind using it in Section V-C.

V. EXPERIMENTS

A. Research Questions

To motivate our exploration of the one-class semi-

supervised approach, LR-LR, we articulate a few research

questions. Namely, we want to understand what potential

advantages LR-LR may have over supervised approaches when

considering two of the biggest difficulties in machine learning

approaches for Android security: lack of ample ground truth

and also lack of accurate ground truth. To explore these two

areas, we form three research questions:

1) Between supervised learning and semi-supervised learn-

ing from positive data and unlabeled data, which ap-

proach is better when working with inaccurate ground

truth, i.e., when the available labeled data contains noise?

2) Between the two approaches, which one is the most

effective in terms of predicting future labels?

3) How many labeled malware apps do we need to garner

strong classification performance?

To answer these three questions, we devised and executed the

three experiments described below.

B. Noisy Ground Truth

Whether experimental ground truth data is based upon the

assumption of all apps collected from Google Play being

benign, or the validity of VirusTotal results, incorrect labels

will exist in datasets. This noise is inevitable, in the real world

and in experimental setups. As we know there is noise inherent

in even our cleanest datasets, we attempt to find out how noise

affects classifier performance and what are the best methods

for dealing with noise in datasets.

To do this, we use a dataset of roughly 50K labeled positive

(Lp) apps combined with an “unlabeled” dataset comprised

of around 940K negative apps (Un) and a varied number

of positive apps in the unlabeled dataset (Up) as defined in

Equation (5) as a function of the noise level. As we vary the

noise level, we set p̃ to be equal to noise as it represents the

expert prediction of the amount of positive apps in the unla-

beled dataset, e.g., exactly what noise is intended to introduce.

In the case of the supervised classifiers, we will provide all

“unlabeled” apps as noisy negative apps representative of the

false negative class labels that cause malware to be marked as

benign and, therefore, present in benign datasets.

For evaluation, we leverage 5-fold cross-validation. Within

the training folds, we use Lp and Up + Un as the positive

and unlabeled/negative examples, respectively. In the held-out

test fold, we evaluate over the true labels, e.g. Lp and Up are

positives instances, while Un contains negatives instances. We

then compute auPRC for each fold, and average the 5-folds to

yield a composite auPRC for a given noise level.

We compare LR-LR with supervised Logistic Regression,

SVM and Naı̈ve Bayes in Figure 2. As can be seen in Figure 2,

LR-LR not only has the best performance at nearly all levels of

noise, but also performs better as noise is increased. This can

be attributed to the fact that LR-LR can learn from unlabeled

data, and a higher level of injected noise results in more

3462

Fig. 2: Algorithm performance when varying the noise level

0 0.005 0.01 0.015 0.02 0.025 0.03
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Noise Level

au
P

R
C

Naive Bayes
Logistic Regression
SVM
LR−LR

unlabeled data that can be utilized by LR-LR to refine and

improve its decision boundary. While our experiments only

used as high as a 3% noise rate, we can assume a continued

strong performance as noise increases upwards of 7%, the

estimate for the malware rate in the Google Play Store[5].

Among the three supervised classifiers, Logistic Regression

is the best, being slightly superior to LR-LR for datasets with-

out noise. However, as the noise increases, the performance

of Logistic Regression decreases. The next best supervised

classifier is SVM, whose performance also decreases with the

amount of noise. It is interesting to note that the performance

of Naı̈ve Bayes improves with the amount of noise. We

speculate this is due to the fact that Naı̈ve Bayes may be

skewed towards estimating positives, and the introduction of

positive noise in the train and test sets means that it gets less

predictions wrong in the testing phase.

C. Predicting the Future

As previously discussed, labels, especially when first given,

are often inaccurate. In many instances within a year, labels

for an app will change. A vast majority of the time a label will

change, it will change from benign to malicious. For each of

the apps in our dataset, we have two sets of class labels: one

from 2015 and one from 2016. To be considered malicious,

we require that at least 10 scanners mark it as so. For benign,

we require that zero scanners mark it as malicious. In our

dataset, it happens 1681 times that an app goes from benign

to malicious, where the opposite flow from malicious to benign

only happens one time. The anti-virus precision with respect

to malware is exceptionally high, making this the ideal class

to learn a decision boundary from as opposed to the less clear

benign class. Due to the fact that a supervised classifier will

train over both benign and malicious samples, it will reinforce

these incorrect labels into the classifier as it learns those 1681

actually malicious apps as benign. We hypothesize that LR-LR

will perform better at predicting the correct label, mainly due

to the fact that it only trains over apps labeled as malware.

To experiment with this, we train the three supervised

classifiers, and LR-LR (with p̃ = .01) over our dataset using

the 2015 class labels. We then test in two parts. First, we train

a classifier on 4 folds with 2015 class labels and evaluate

it using auPRC on the fifth, left-out fold using 2016 class

labels. Second, we want to additionally focus on finding the

best classifiers for detecting those apps with an incorrect

label. While auPRC includes the accuracy of the labeling

for the 1682 changed instances in its composite measure, the

small number of apps that changed labels (i.e., 1682) were

insignificant in the million plus apps that the dataset contains.

Furthermore, thresholding auPRC over just the changed apps

at various values displays an overly-optimistic view due to

the fact that there is only one false positive as compared to

1681 anti-virus false negatives, therefore we need a different

metric. We use the F1-score due to the substantial imbalance

of having only one negative in the 1682 apps, precision can

be very misleading as there is a maximum of 1 false positive.

F1 = 2 · precision · recall
precision+ recall

As such, we compute the F1-score directly over just the

1682 apps with a changed label in our dataset, using the

standard threshold of 0.5. The results for both auPRC and

F1-score are shown in Table I.

Classifier auPRC 2016 F1-score
Naive Bayes 0.490 0.371
Logistic Regression 0.717 0.164
SVM 0.628 0.097
LR-LR 0.701 0.309

TABLE I: Using 2015 class labels to predict 2016 labels

We note that while an F1-score of .309 is not outstanding,

it is nearly double that of the traditional Logistic Regression.

When considering that we trained over all samples, includ-

ing those with mislabeled labels, the F1-score functionally

represents the classifiers ability to determine an inaccurate

label. While LR-LR did not have the best F1-score or auPRC,

we feel it is the best balance between overall performance,

and performance when considering mislabeled instances. The

focus of the experiments is working with noisy and mislabeled

data, and for that, LR-LR is the best all-around solution.

Furthermore, while Naı̈ve Bayes does have a strong F1-score,

we note it has a very poor auPRC score, suggesting that in

general it has a large amount of false positives, e.g. it will be

overly and inaccurately inclined to label an app as malware.

One other interesting result of this experiment is the fact that

while we did not inject any noise as in previous experiments,

we saw the best LR-LR performance at p̃ = 0.01 and not

p̃ = 0.0. We believe this can be attributed to the fact that

even while we have vetted our benign apps via VirusTotal,

we know that in the future some of these same apps will be

relabeled as malicious. As such, there exists natural noise in

our dataset. Unfortunately, we have no way of verifying this

hypothesis short of waiting for updated labels or manually

verifying malicious apps.

3463

D. Minimizing Necessary Ground Truth

The main benefit of semi-supervised learning techniques

is the ability to learn off of unlabeled data. To experiment

with this, we explore how LR-LR and the three supervised

algorithms perform as we vary the amount of labeled positive

data in the training set. We provide the amount of labeled data

as a proportion of the total high-confidence malware (10 or

more A/V scanners) we have in our database. We vary through

0.005, .01, .05, .1, .2, .3, .4, and .5 of the total roughly 97K

malware we have. Our unlabeled dataset has a constant noise

factor of .02 in these experiments. As we use more positive

data in the training, there will be more positive data also in

the test as we distribute the instances equally between train

and test, so in effect, when increasing the amount of labeled

data, we also change the distribution of the test data from a

smaller ratio to a larger ratio.

Fig. 3: Algorithm performance when varying the amount of

labeled positive training data

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Proportion of Labeled Positive Data

au
P

R
C

Naive Bayes
Logistic Regression
SVM
LR−LR

As seen in Figure 3, LR-LR is comparatively more effective

in situations containing a low amount of labeled positive data.

This is to be expected as LR-LR is uniquely able to learn from

the unlabeled data and grow its knowledge, even with a limited

starting point. Also as expected, when the amount of positive

labeled data is high, LR-LR and vanilla Logistic Regression

have very similar performance, as the benefits offered by the

inclusion of unlabeled data taper off.

The key insight here that makes LR-LR comparatively

advantageous is in the scenario of less common or newer

malware. In the case of zero day malware or even malware

where not many samples from the family have been obtained,

LR-LR’s ability to learn from unlabeled data results in higher

performance than traditional supervised classifiers. Further-

more, when combined with the rationale from Kantchelian [10]

that false negatives are high, there may only be one or two

samples from a family that have been labeled as malware and

included in the malware training set. The rest of the samples,

not labeled as malicious yet, would be considered unlabeled

in LR-LR as opposed to being classified as benign, whereby

LR-LR would be able to utilize those unlabeled samples to

improve classifier performance. A supervised classifier, on

the other hand, would consider those mislabeled malware as

benign, harming classifier performance.

VI. RELATED WORK

Supervised Android Security. Core works in the supervised

Android security area include Drebin [1] which extracts over

half a million features relating to both code and metadata

attributes and reports very strong performance with SVM.

Many of their features included attributes like the names of

individual Android Activities within an app, and URLs, many

of which were only used once or twice, leading to a very large,

and very sparse feature space.

DroidSIFT [24] uses a more computationally-expensive

method by extracting features from API dependency graphs

and comparing against malware and benign app databases for

similar flows. Then a Naive Bayes classifier is used to classify

new unseen apps as either benign or malicious.

More recent approaches in supervised learning for Android

security in the past year or so have become more sophisticated.

One recent work by Sheen et al. [19] focused on utilizing

multi-stage and multi-expert ensemble learning. They work

with a rather small dataset with less than 2,000 apps and

use k-NN, Logistic Regression, and Random Forrest as their

classifiers. Another approach by Chuang et al. [6] uses the

concept of fused classifiers based off of different sets of

features for the same apps. The two sets correlate to the most

common APIs for malware apps and benign apps, thereby

making classifiers for each, then fusing them together to make

one decision. The approach uses the SVM classifier and a

dataset of around 6,000 benign apps and 3,400 malicious apps.

Roy et al. [18] explored six research questions derived

from current techniques being used by peer works utilizing

machine learning for Android app vetting. From these research

questions, best practices were extracted including insights

about the importance of using real-world class imbalances,

effective classifier metrics, and the value of high quality

ground truth, among others.

Semi-supervised Security. Only one main work exists in the

area of semi-supervised learning for Android security [12]. It,

however, does not make use of the key insights of the high

precision of positive labels and comparatively low precision of

benign apps as it utilizes both positive and negative app labels

combined with a tri-training algorithm leveraging Support

Vector Machines as the base algorithm. Wang et al. [22] focus

on policy analysis and enforcement of the underlying Android

operating system using semi-supervised learning on audit logs.

Martin et al. [14] focus on checking app behavior against

its description in the app store by leveraging self-training. A

generic malware detection approach by Bazrafshan et al. [2]

focuses on extracting op-code sequences from executables and

uses the sequence frequency for a semi-supervised algorithm,

Local and Global Consistency. Finally, Label Regularized

Logistic Regression [17] has been used to detect security

3464

events (e.g. DDoS, hacking, etc.) from tweets on Twitter using

a small amount of seed events and a large amount of unlabeled

tweets. Our work is the first work to investigate a one-class

semi-supervised approach for Android malware detection. Fur-

thermore, we leverage a semi-supervised approach (LR-LR)

specific to the strengths and weaknesses of the Android app

data. We combine the fact that positive apps are highly certain

by only calculating the log likelihood over positive instances,

while leveraging the big data elements with the inclusion of

unlabeled apps.

VII. CONCLUSIONS AND FUTURE WORK

In this work we leveraged one-class semi-supervised learn-

ing for the first time in the Android malware detection field.

We carefully observed the strengths and weaknesses in current

ground truth in the Android space and how these can be

remedied with a one-class semi-supervised approach. Android

ground truth, unlike almost all other categories of ground truth

has inherent flaws due to the ability of changing class labels

over time and the inability to ever know for certain if an app

is actually benign. Using these understandings about Android

ground truth, we apply Label Regularized Logistic Regression

specifically to capitalize on this dynamic. We find in our three

separate research questions that LR-LR outperforms other

approaches, leading us to believe it is a promising area of

further research in the Android security community.

In future work, we would like to continue exploring tech-

niques to deal with the unique difficulties in detecting Android

malware, namely in the arena of finding high quality ground

truth class labels. We will continue to monitor changing class

labels and will be able to form more holistic understandings

of how anti-virus ground truth changes and evolves.

Furthermore, we will attempt to add new dimensions of

sources when creating ground truth labels. One potential

avenue for this is leveraging social media data such as Twitter

which has been shown to give some insight on security events

that may be happening [17]. We would attempt to catalog the

social media posts, map them to a specific app, and then use

a form of sentiment analysis to supplement existing anti-virus

ground truth.

ACKNOWLEDGMENT

Part of the computing for this project was performed on the

Beocat Research Cluster at Kansas State University, which is

funded in part by the NSF grants MRI-1429316 and CC-IIE-

1440548. This project is partially supported by the National

Science Foundation under Grant No. 1622402. Any opinions,

findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck. Drebin:
Effective and explainable detection of Android malware in your pocket.
In Proc. of the NDSS, 2014.

[2] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh. A survey on
heuristic malware detection techniques. In Information and Knowledge
Technology (IKT), 2013 5th Conference on, pages 113–120. IEEE, 2013.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, COLT’ 98, pages 92–100. ACM, 1998.

[4] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for
market-scale mobile malware analysis. In Proc. of the WiSec, 2013.

[5] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu. Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale. In 24th USENIX Security Symposium
(USENIX Security 15), pages 659–674, 2015.

[6] H. Y. Chuang and S. D. Wang. Machine learning based hybrid behavior
models for Android malware analysis. In Software Quality, Reliability
and Security (QRS), 2015 IEEE International Conference on, pages 201–
206, Aug 2015.

[7] F. Cozman and I. Cohen. Risks of semi-supervised learning: How
unlabeled data can degrade performance of generative classifiers. In
O. Chapelle, B. Schölkopf, and A. Zien, editors, Semi-Supervised
Learning. MIT Press, 2006.

[8] J. Davis and M. Goadrich. The Relationship Between Precision-Recall
and ROC curves. In Proc. of the ICML, 2006.

[9] Google. Android security - 2014 year in review. http://bit.ly/1aoqsx0,
2014.

[10] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar,
R. Bachwani, A. D. Joseph, and J. D. Tygar. Better malware ground
truth: Techniques for weighting anti-virus vendor labels. In Proceedings
of the 8th ACM Workshop on Artificial Intelligence and Security, AISec
’15, pages 45–56, New York, NY, USA, 2015. ACM.

[11] Lookout. 2014 mobile threat report. http://bit.ly/1fktFwe, 2014.
[12] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun. Active semi-supervised

approach for checking app behavior against its description. In Computer
Software and Applications Conference (COMPSAC), 2015 IEEE 39th
Annual, volume 2, pages 179–184. IEEE, 2015.

[13] G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised
learning via expectation regularization. In Proceedings of the 24th
International Conference on Machine Learning, ICML ’07, pages 593–
600, New York, NY, USA, 2007. ACM.

[14] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app
store analysis for software engineering. RN, 16:02, 2016.

[15] K. P. Murphy. Machine learning: a probabilistic perspective. 2012.
[16] RiskIQ. RiskIQ Reports malicious mobile apps in Google Play have

spiked nearly 400 percent. http://bit.ly/1siyWOS, 2014.
[17] A. Ritter, E. Wright, W. Casey, and T. Mitchell. Weakly supervised

extraction of computer security events from Twitter. In Proceedings
of the 24th International Conference on World Wide Web, WWW ’15,
pages 896–905, New York, NY, USA, 2015. ACM.

[18] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P.
Ranganath, H. Li, and N. Guevara. Experimental study with real-
world data for Android app security analysis using machine learning.
In Proceedings of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pages 81–90, New York, NY, USA, 2015.
ACM.

[19] S. Sheen and A. Ramalingam. Malware detection in Android files based
on multiple levels of learning and diverse data sources. In Proceedings
of the Third International Symposium on Women in Computing and
Informatics, pages 553–559. ACM, 2015.

[20] N. Viennot, E. Garcia, and J. Nieh. A measurement study of Google
Play. In The 2014 ACM international conference on Measurement and
modeling of computer systems, pages 221–233. ACM, 2014.

[21] Virus Total. https://www.virustotal.com/. Accessed: December 2014.
[22] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and

A. M. Azab. Easeandroid: Automatic policy analysis and refinement for
security enhanced android via large-scale semi-supervised learning. In
24th USENIX Security Symposium (USENIX Security 15), pages 351–
366, 2015.

[23] S. Wu, P. Wang, X. Li, and Y. Zhang. Effective detection of Android
malware based on the usage of data flow APIs and machine learning.
Information and Software Technology, 75:17 – 25, 2016.

[24] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware Android mal-
ware classification using weighted contextual API dependency graphs.
In Proc. of ACM CCS, 2014.

[25] Y. Zhou and X. Jiang. Dissecting Android malware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 95–109. IEEE, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

