
2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Using Bayesian Networks for Cyber Security Analysis

Peng Xie*, Jason H Li*, Xinming Out, Peng Liu+, Renato Levy*

*Intelligent Automation Inc. Rockville, MD, USA, emaii:{pxie. jii. rlevy@i-a-i.com }
tKansas State University, Manhattan, KS, USA, emaii:xou@ksu.edu

+ Penn State University,University Park, PA, USA.emaii: piiu@ist.psu.edu

Abstract

Capturing the uncertain aspects in cyber security is
important for security analysis in enterprise networks.
However, there has been insufficient effort in studying what
modeling approaches correctly capture such uncertainty,
and how to construct the models to make them useful in
practice. In this paper, we present our work on justifying
uncertainty modeling for cyber security, and initial evi­
dence indicating that it is a useful approach. Our work is
centered around near real-time security analysis such as
intrusion response. We need to know what is really happen­
ing, the scope and severity level, possible consequences,
and potential countermeasures. We report our current
efforts on identifying the important types of uncertainty and
on using Bayesian networks to capture them for enhanced
security analysis. We build an example Bayesian network
based on a current security graph model, justify our mod­
eling approach through attack semantics and experimental
study, and show that the resulting Bayesian network is not
sensitive to parameter perturbation.

1 Introduction

To carry out enterpri se security analysi s , graphical

models capturing relationships among vulnerabil ities and

exploits have become the main-stream approach [3], [1 3] ,

[1 8], [2 1]. An attack graph i l lustrates possible multi -stage

attacks in an enterprise network, typically by presenting

the logical causality relations among multiple privileges

and configuration settings . Such logical relations are deter­
ministic: the bad things will certainly happen in their worst

forms as long as all the prerequisites are satisfied , and no

bad things will happen if such conditions do not hold .

While it i s important to understand such logical relations ,

the deterministic nature has l imited their use in practical

network defense , especially when the graphical models are

to be used in real-time intrusion response .

978-1-4244-7501-8/101$26.00 ©201 0 IEEE

. (Q),�-- -sharedBinar5

o
webPages

fileServer

Fig. 1. An example attack scenario.

Let us look at an example , shown in Fig . I, which i s

taken from Ref. [2 1]. Suppose the following potential at­

tack paths are discovered after analyzing the configuration .

An attacker first compromises webServer by remotely

exploiting vulnerabil ity CVE-2002-0392 to get local

access on the server. Since webServer is al lowed to

access fileServer through the NFS protocol , he can

then try to modify data on the file server. There are two

ways to achieve this . If there are vulnerabil ities in the

NFS service daemons , he can try to exploit them and get

local access on the machine; or if the NFS export table

is not set up appropriately, he can modify files on the

server through the NFS protocol by using programs l ike

NFS Shelll. Once he can modify files on the file server,

the attacker can install a Trojan-horse program in the

executable binaries on f ileServer that is mounted by

machine workStation. The attacker can now wait for an

innocent user on workStation to execute it and obtain

control on the machine . A portion of the corresponding

attack graph is shown in Figure 2 .

The node P4 and its parents Pi, P2, P3 express the

1. A program thaI provides user-level access to an NFS server
(flp:/ /ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz)

211 DSN 2010: Xie et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

Fig. 2. A portion of the example graph.

causality relation in the NFS Shell attack: if an attacker

compromises the web server (pd, the web server can

access the file server through the NFS protocol (P2), and

the file server exports a partition to the web server (P3),
then the attacker will be able to launch an NFS Shell attack

to access files on the file server (P4). Suppose we want to

use this piece of information in real-time security analysi s .

When we suspect the web server has been compromised ,

with how much confidence can we say that the files on the

file server have been compromised? The answer is far less

certain than the deterministic logic can provide . How can

we know whether the attacker has chosen to launch this

attack? Even if he did so , how can we know that the attack

has succeeded? Moreover, how can we account for the real­

time observations that may be relevant? For example, a file

system integrity checker such as Tripwire [16] may report

that certain files have been modified . How shall we update

our belief about possible attacks given this observation?

Real-time security analysis i s a far more imprecise

process than deterministic reasoning . We do not know

the attacker's choices , thus there is the uncertainty from

unknown attacker behaviors . Cyber attacks are not always

guaranteed to succeed , thus there is the uncertainty from

the imperfect nature of exploits . The defender's observa­

tions on potential attack activities are l imited , and as a

result we have the uncertainty from false positives and fal se

negatives of intrusion detection system (IDS) sensors . Nev­

ertheless , the logical causality encoded in a deterministic

attack graph is invaluable to understand security events ,

and will be useful for building practical network defense

tools if we can appropriately account for the uncertainty

inherent in the reasoning process .

Recent years have seen a number of attempts at using

Bayesian networks to model such uncertainty in security

analysis [2], [10], [II], [12]. A Bayesian network (BN) is

a graphical representation of cause-and-effect relationships

within a problem domain . More formally, a Bayesian

network is a Directed Acyclic Graph (DAG) in which:

the nodes represent variables of interest (propositions); the

directed l inks represent the causal influence among the

978-1-4244-7501-8/101$26.00 ©2010 IEEE

variables; the strength of an influence is represented by

conditional probabil ity tables (Cn) . For example, if we

imagine that the graph structure in Figure 2 is a Bayesian

network , then node P4 could have the following cn

associated with it .
PI P2 P3 P4
T T T 0.8

otherwise 0

Essentially this cn indicates that if all of P4'S parents

are true , the probabil ity of P4 being true is 0.8; in all other

cases the probabil ity is a (P4 is false) .

Bayesian Network is a powerful tool for real-time

security analysis if a BN model can be built that reflects

reality. However, it is not trivial to construct a Bayesian

Network from an attack graph .

First , it is difficult to model the uncertainty inherited

in security analysi s . For example , we know that due to

the uncertainty from the attacker's choice , P4 may not

become true after all of Pi, P2, and P3 are true simply

because the attacker did not choose to launch the attack.

There may be other reasons why P4 does not become true

after all its parents are true - for example, the attacker

may have chosen to launch the attack but the attack fai led

due to the difficult nature of the exploit. Such uncertainty

will have to be encoded in the same cn associated

with P4. Thus the cn number 0.8 will have a number

of contributing factors in it, which makes the generation

and maintenance of the cn parameters a difficult task.

For example, when we see the same attack activity in

other parts of the network , we may want to increase the

l ikelihood that an attacker may choose to use this attack.

But in the unmodified graph structure there is no easy way

to separate thi s attacker-choice uncertainty from the other

factors in the cn number of 0.8. As a result this type

of correlation cannot be conducted elegantly. This is just

one example problem we have discovered in the l iterature

on building BN models from attack graphs for security

analysi s . We believe a more disciplined BN construction

methodology is needed.

Second , cyber security analysi s , unlike other more well­

behaved problem domains , does not naturally lend itself

to statistical analysi s . In general , we do not have the

ground truths in real traces from which we can learn

the large number of cn parameters , and the attackers

are constantly adapting . As a result, the cn parameters

need to be produced from often vague and subjective

judgments . However, it i s infeasible to ask a human expert

to assign every cn parameter for every BN model . The

vast majority of these numbers need to be computed

automatically from various sources that reflect various

types of uncertainty in cyber security. A BN model that

modularizes and separates the various types of uncertainty

will make this process easier. Since those numbers are

imprecise in nature , the results of BN analysis should not

212 DSN 2010: Xie et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

II
11 15 16 9

T T T l

otherwise 0

Fig. 3. Attack structure and CPT at node 9.

be too sensitive to cn parameters .

While previous studies have proposed various ways of

building BN models from attack graphs , there are a number

of potential problems in the current approaches . In this

paper, we present a BN modeling approach that we believe

possesses the following properties:

1) The graphical structure shal l modularize: it should

separate various types of uncertainty and avoid min­

gling different types of uncertainty in the same cn.

2) The majority of cn parameters shall be computed

automatically from reali stic data sources .

3) The BN model should not be too sensitive to pertur­

bation on the cn parameters .

How to build a BN model for practical security analysis

i s a non-trivial problem . Extensive research must be done

to justify the BN modeling approach and to study its

applicability in real-world security analysi s .

2 Capturing uncertainty in security analysis

In this section we provide a taxonomy of uncertainty in

cyber security, describe what we believe the best way to

capture them in a BN model , and explain how they can be

used in real-time security analysi s .

2.1 Uncertainty in attack structure

Figure 3 shows another portion of the full attack graph .

Let us look at the following nodes . 1) Node 1 1 : The

attacker obtains network access to webServer on tcp/80;

2) Node 15 : The program httpd i s a service running

on webServer as user apache, l i stening on tcp/80; 3)

Node 1 6: The vulnerabil ity CAN-2002-0392 exists in

the httpd program on webServer; and 4) Node 9: The

attacker obtains code execution privilege on webServer.

The relationship of these nodes is simple: "nodes 1 1 , 1 5 ,

and 1 6 altogether enable node 9". Hence , we can obtain the

basic attack structure , as shown in Fig . 3 . The logic AND

can be represented using Bayesian network techniques via

the conditional probabi l ity table (Cn) stored at node 9.

Essentially, attacks can only happen by obeying both of

the two mandates: 1) Physical path: attacks can only occur

by following network connectivity and reachabil ity; this i s

the physical l imit for attacks . 2) Attack structure: attacks

can only happen by exploiting some vulnerabil ity, with

pre-conditions enabling the attacks and post-conditions as

the consequence (effect) . Careful inspection reveals that

almost all attack graphs to date embed the physical path

and attack structure information in the models , though

the graph generation algorithms themselves may or may

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

11 15 16 9

T T T 0.8
otherwise 0

Fig. 4. Attack structure and modified CPT that

captures uncertainty.

not have considered doing so explicitly. Furthermore , it i s

noted that while the physical paths are obviously network

specific, the attack structure can be abstract knowledge

without encoding any network specific information (e.g.
particular hosts) . Therefore , the abstract knowledge can be

modeled and managed independent of specific networks .

The attack structures contain inherent uncertainty, since

most attacks do not have 1 00% guarantee of success . Given

that nodes 1 1 , 1 5 , and 16 are all true , i s it absolutely

the case that node 9 is achieved by an attacker? More

generally, knowing that there is a vulnerabil ity in a net­

work service accessible to an attacker, can the attacker

absolutely obtain privilege on the server? In reality, the

answer is often mixed . For example, National Vulnerabil ity

Database (NVD) [1] publi shes a large number of software

vulnerabilities , many of which are categorized as remote

vulnerabil ities that can cause privilege escalation . But

undoubtedly there are variations in the difficulty of exploit

among those vulnerabilities . For a particular vulnerabil ity,

such as CAN-2002-0392 in the example , we may know

that a working exploit is already publicly available and it

works most but not all of the time . Given that , maybe we

should change the cn accordingly, as shown in Fig . 4.

There exist already standardized metrics on the exploit

difficulty of vulnerabilities . For example, CVSS [1 9], [23]

is a standard for specifying vulnerabil ity attributes . The

base metric of Access Complexity (AC) descri bes the

complexity of exploiting the vulnerabil ity and can take

the values of "high", "medium", or "low". This metric

indicates the success l ikelihood of an exploit when all the

necessary pre-conditions are met and an attacker launches

the exploit. The AC metric is part of the Basic metrics in

CVSS which are already maintained by NVD for every

reported vulnerabil ity. Hence we can use this existing data

source to derive the cn parameter (Table 1) . Another

relevant CVSS metric is the Exploitability (E) metric from

the Temporal category. This metric describes the current

state of exploit and can take the values of "unproven",

"proof-of-concept", "functional", or "high". The E metric

may change over time when new exploits are published or

new attack data are collected . This metric would al so be

useful to derive the cn parameter - a vulnerability with

"high" exploitabil ity is more l ikely to yield a successful

attack than a "proof-of-concept" exploitabil ity. However,

NVD currently does not maintain any Temporal metric ,

including the E metric . These CVSS metrics are good

213 DSN 2010: Xie et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

TABLE 1. CVSS AC metrics and success like­

lihoods
AC metric Success Likelihood
high 25%
medium 75%
low 85%

TABLE 2 O· t Iscre e I Jro b b·lity levels a I
Name Value
certain 100%
probable 85%
expected 75%
unlikely 25%
improbable 15%
impossible 0%

sources to derive the CPT parameters for attack structures

that involve exploiting software vulnerabilities . We can

specify a function that maps the vulnerability's AC and/or

E metric to the CPT parameter of the corresponding node

in the BN, l ike node 9 above. We currently only use the

AC metric in Table 1 .

For attack structures that are not about exploiting

software vulnerabilities , we can specify the l ikelihood of

success directly in the attack-structure knowledge base .

We also use discrete levels similar to those found in

CVSS metrics , as shown in Table 2 . For example , the

attack structure that leads to node P4 in Figure 2 is an

NFS Shell attack . For this specific type of exploit we can

estimate its success l ikelihood when all the preconditions

are met . Here the number 75% will be used as the CPT

parameter. We believe that providing these numbers in such

a discrete manner is reasonable , since the numbers are

already imprecise: what is the difference between "75%"

and "80%" to a human? In Section 4 we demonstrate

that the resulting BN is not sensitive to input parameter

purturbation , further justifying the use of discrete levels in

deriving CPT parameters .

2.2 Uncertainty about attacker actions

This is the unique and perhaps the biggest uncertainty in

real-time security analysi s . Suppose for the simple attack

structure (as shown in Fig . 3 and 4) we have used CVSS

to derive the success l ikelihood of the attack. Then can

we use that number as the CPT parameter? If what we

want to know is "what could happen" then the answer

is yes . This is the typical kind of questions asked during

pre-deployment planning phase , and the Bayesian network

model can sufficiently answer them . However, the above

node structure is not sufficient for real-time analysi s . In

real-time analysi s , even when all the prerequisites become

true , there may not be an attacker there . For analogy,

if the door is open to a potential attacker, the attack

may not happen until an attacker approaches the door.

Since what we care about in real-time analysis is "what's

really happening", the key difference from pre-deployment

planning is that we need to model whether an attack is

978-1-4244-7501-8/10/$26.00 ©201O IEEE

happening or not. This is the unique uncertainty inherent

in real-time analysi s . To this end , we introduce a new kind

of node in our Bayesian network models , called the attack

action node (AAN) .

An attack action node is introduced as an additional

parent node for those important attacks (Fig . 5) . An AAN

is an artifact introduced by the modeler for better modeling

power and clarity. "AAN is true" means the attacker action

is present , and other prerequisites become effective . "AAN

is false" means no attacker action is present . This will

"block" all other prerequisites from being effective . In

other words , the CPT at node 9 will have a zero probabil ity

for al l rows where AAN is false , as shown below.

11 15 16 AAN 9

T T T T 0.8
otherwise 0

Not all attack nodes need an AAN; typically only those

"important" nodes in Bayesian network models should be

equipped with AAN nodes . For example, those first (or

very early) stepping stones in multi-step attacks should

have AAN nodes associated with them to indicate whether

or not attacks are ongoing . As another example, an AAN

is not necessary when a privilege does not need an attacker

to take any action , e.g. a privilege that can be "naturally"

obtained as a result of NFS file-sharing semantics .

The next question is : how can one obtain information

about the AAN states? Knowing whether or not the attack

is ongoing will greatly help the subsequent reasoning

process . First , the CPT at the AAN node represents the

prior l ikelihood of an attack . This number can be set

globally by the user. For example, if this type of attack

has been seen recently, the user may decide to increase

the AAN node's prior l ikelihood for all such attacks to

indicate an increased threat level . Second , many security

monitoring systems can provide evidence of possible attack

activities and these observations indicate an increased

posterior l ikelihood of the attack . To model this correlation

we introduce a sensor node as the child of an AAN

whenever a sensor is available that can report potential

attack activity of this sort . In our Bayesian network models ,

which focus o n high-level reasoning rather than low-level

data processing , the sensor node can hardly be a physical

tel l-tale sensor. Most l ikely it captures aggregated results

from low-level sensors (e .g . IDS sensors) , which indicate

the presence of certain attacks . The reliability of the sensor

node is reflected in its local CPT, with false positive and

false negative probabilities explicitly expressed (Fig . 5) .

This is one example of the local observation model to be

discussed in the next section.

2.3 Uncertainty about alerts

It is well known that alerts coming from intrusion

detection systems tend to have some amount of false

positives . In thi s work , we will not model raw alerts

214 DSN 2010: Xie et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

CPT at nodeS

A S ,S

T 0.9 0.1

F 0.050.95

Fig. 5. Uncertainty related to attacker action.

CPTa.llodeO
A 0 �O

The rcsl or
the Bayesian

Network

T o.� Fa\seposilivc

F 0.150.85

Fig. 6. Local observation model.

directly. Instead , we will only input relevant correlated

alerts that can help high-level reasoning . Nonetheless , the

correlated alerts may sti l l contain a fair amount of fal se

positives . If for some reason we know that the correlated

alerts come from a high-fidelity alert correlation process ,

we may impose high confidence level upon them . Lower

confidence will be put otherwise .

We propose to use a local observation model (LOM)

to model such uncertainty about alerts . As shown in

Fig . 6 , for states that can be inferred from imperfect

sensors , we introduce a pair of nodes: the ActualState

node and the Observation node . The ActualState

node is not observable itself. The Observation node

is a direct chi ld of the ActualState node , and the

Observation node provides observations to infer the

true state of the ActualState node . Suppose both the

ActualState node and the Observation node are

binary, and the en associated with the Observation

node represents how the ActualState node will affect

the Observation node . In this en, a false positive

probabil ity is inherently included .

A concrete evidence about node Observation will

change the posterior probability of node ActualState

by computing P(ActualState I Observation=True) . This kind

of "backward" computation is routine in hidden Markov

models (HMM) , and Bayesian networks can naturally

execute such kind of inference . Further, such computations

can be executed in some fairly efficient manner [15][22].

2.4 Modularized CPT computation

There are well-studied BN modeling techniques that can

modularize various sources of uncertainty in the compu­

tation of en parameters . We provide two examples that

may be directly applied to cyber security analysi s .

The first example is called "Noisy-And", and i t extends

from the determini stic AND logic . With deterministic

AND (see Fig . 7) , node Escalation will become True

978-1-4244-7501-8/101$26.00 ©2010 IEEE

Net Access Vublerabllity £x�1 !,(Escalation) ',(... Esc:aJatioo)

O.()i=O.21«).4 0.92

.4 0.6

.2 0.8

Fig. 7. Noisy-And example.

Nt-·s SlId exocCode irnpllell rue It('('ess l'(IIrt:elJlliFle) !·(....-t'eSsFilej

Fig. 8. Noisy-Or example.

0.0 1.0

0.8 ®
.7 (Qp
0.94 O.06=0.2XO.3

only when both its parents NetAccess and VulnExist

are True . This says that Escalation will never happen

otherwise . A Noisy-And however does not imply that a

child is definitely false if one of the parents is false .

To model the "leaky" chances that Escalation may

sti l l happen without requiring all of the parents to be

True , "leaky" parameters are introduced . In particular, each

parent has an associated (enabling) influence to the child

that is represented by a probability. For example, suppose

the vulnerabil ity scanner does not report any findings

(VulnExist i s False) . In practice , however, there could

be zero-day vulnerabil ities in a piece of software . Let

0 .2 represent the l ikelihood of the existence of zero­

day vulnerabil ity in the software under concern . In other

words , 0 .2 is the leaky chance for the vulnerabil ity to

be actually true (though reported False) . Hence , the leaky

parameter P(EI-,v) = 0.2 represents the l ikelihood that

vulnerabil ity scanner misses a true vulnerabil ity. We can

define another leaky parameter P(EI---,N) = 0 .4, which

could mean the l ikelihood the attacker is able to circumvent

the firewall to gain network access , even when attack-graph

analysis shows that there is no network path .

The second example is called "Noisy-Or" and it extends

from the deterministic OR logic . With deterministic OR

(see Fig . 8) , node accessFile i s True as long as one

or more of its parents become True . A Noisy-Or logic

however does not imply that a child is definitely true if

one of the parents is true .

As in Noisy-And , the leaky parameters are introduced

to model the "leaky" chances that accessFile may not

always be True when one or more of its parents is True . For

example, in Fig . 8 , let P(---,accessFileINFSShell) = 0.3,

which means that NFSShell being True does not nec­

essarily imply that accessFile is True; there is sti l l a

30% chance that accessFile will not happen . Similarly,

we can define another (inhibiting) leaky parameter as

P(---,accessFilelexecCode) = 0.2.

It is noted that in "Noisy-And" and "Noisy-Or" logic ,

the leaky parameter is defined separately and indepen-

215 DSN 2010: Xie et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

dently. This independence assumption simplifies the speci­

fication of the parameters and enables simple and efficient

calculation of the probability distribution . As shown in

Fig . 7 and Fig . 8 , the CPTs at nodes Escalation

and accessFile have 8 entries . However, just two
leaky parameters are specified; all other entries can be

easily computed from these parameters . For instance ,

P(EIN = F, V = F) = 0.2 x 0.4 = 0.08. Further, the

independent assessment of the leaky parameters is more

intuitive for human experts , since humans are known to

perform relatively better in a "case-by-case" manner. It

would be an extremely daunting task for human experts

to assess situations considering different combinations of

multiple factors , which is exponential with the number of

parents and also non-intuitive . The independence assump­

tion alleviates the difficulty.

2.5 Summary

Our BN modeling approach separates three important

types of uncertainty in real-time security analysis: the

uncertainty on attack success , the uncertainty of attacker

choice , and the uncertainty from imperfect IDS sensors .

This enables computing CPT parameters from existing

data sources such as NYD/CYSS . The more advanced BN

modeling techniques such as Noisy-And and Noisy-Or can

further modularize the sources of uncertainty within a CPT.

Our BN modeling approach satisfies the first two desirable

properties described in Section 1 .

3 Implementation

In this section we describe how to build a Bayesian

network from an attack graph tool . We use the MulYAL

attack graph toolkit [2 1] for our implementation , but the

approach can extend to other attack graphs with similar

semantics [8], [1 3] , [26]. The MulYAL reasoning system

can incorporate CYSS metrics from NYD data sources and

output the AC metric . We use the same example as in

Section 1 to describe how we derive the BN structure from

the attack graph .

3.1 Adding new nodes

Attack Action Node (AAN). As discussed in section 2 .2 ,

we need to introduce the AAN node to model the existence

of an attacker actively exploiting the system . Thus , for

some nodes in the graph model that represent conse­

quences of an attack , we may put an AAN node as its

parent . The attack's post-condition will become true only

if al l its pre-conditions are met and the AAN node is

true . This changes the graph's semantics from "what could

happen" to "what has happened". A separate AAN is used

for each selected attack node , rather than sharing a single

AAN node among multiple attack nodes . This is because

the attacker may choose one of many possible attack paths .

978-1-4244-7501-8/101$26.00 ©2010 IEEE

Fig. 9. An example Bayesian network model.

Local Observation Model (LOM). Section 2 .3 intro­

duces the notion of local observation model that can be

used to incorporate the various detectors used in cyber se­

curity, such as IDS . In real-time security analysi s , there are

methods to monitor and detect potential security threats .

For example , an IDS could be used to detect the exi stence

of an attacker and a file system monitor such as Tripwire

can be used to detect file-system modifications . However,

the observation or detector may not always be accurate . In

our LOM , a new node i s introduced to model the inaccurate

observation (detectors) , and an arc from the actual state to

the observation state represents the fact that the observation

is influenced by the actual state .

Fig . 9 shows the generated BN structure for the attack

scenario shown in Fig . 1 . Using conditional probabili­

ties (and Noisy-And and Noisy-Or semantics) , there is

no di stinction between AND/OR nodes any more . Node

22 indicates that the NFS Shell attack against the file

server has been accompli shed by the attacker. Obviously,

if there is no attacker, no attack can be accompli shed .

So we introduced an AAN node for node 22 . When an

attacker is present and sending the file server an NFS shell

exploit packet , this action could be detected by a network­

based IDS , such as Snort . Thus we introduced an LOM

observation node 21 so that whenever the IDS reports a

suspected NFS exploit packet , this node will be true . If the

attacker successful ly modified the files through the exploit,

node 24 will be true . In this case , a Tripwire monitor could

report a suspicious file modification . Thus we added an

LOM observation node Tripwire to capture this event .

3.2 Determining the CPT tables

Each node in a Bayesian network needs to be associated

with a CPT which is the probabil ity distribution of the

node's possible states conditioned on the parents' states .

For a node with no parent (root nodes) , the CPT is

216 DSN 2010: Xie et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

the node's prior probabil ity distribution . By adopting the

Noisy-Or and Noisy-And techniques discussed in Sec­

tion 2, the CPT computation can be reduced to obtaining

certain l ikelihood values associated with individual condi­

tions , such as the difficulty level of exploiting a vulner­

ability, the l ikelihood that a piece of software contains a

zero-day vulnerabil ity, etc. Many of them can be derived

from currently-available data sources , such as the National

Vulnerabil ity Database , which provides various metrics

for security vulnerabil ities in the CVSS format. In our

implementation , we assign the CPT values based on the

values from Table 2. We use the exact values corresponding

to the l ikelihood such as certain and impossible and

use the middle values of the ranges corresponding to other

l ikelihood . For example , we use value 20% to reflect the

l ikelihood for unlikely.

However, there are sti l l CPT entries that would rely on

human experts to fill in , such as the false positive and false

negative rates for IDS detectors , the a priori l ikelihood

for attacks , etc . We can have the experts specify those

conditional probabilities using the discrete values given in

Table 2. In this work , we assign those levels manually

based on our understanding of the security problems .

4 Experimental Results

Although the CPT tables of a BN-based security anal­

ysis tool are often determined by human experts , the

effectiveness of the BN-based security analysis tool must

be evaluated in an objective way.

4.1 Evaluation Methodology

In our experiments , we want to check if the BN­

based tool can help the security administrator in security

analysi s . We evaluate the performance of a BN-based tool

by comparing its outputs with a Referee's . The Referee

knows all the ground truth and is absolutely correct .

In our experiments , the ground truth is a fully ordered

sequence of events; the Referee has complete and perfect

knowledge on which events are malicious and which events

are legitimate . The order of the events is determined by

the start time of the events . For simplicity, we assume

that each event will be instantly finished . In this way, we

ignore the differences among event durations . The BN­

based tool can only access the information generated by

IDS sensors , which is already readily avai lable to the

security administrator. Note that in our experiments , the

BN-based tool actually sees a distorted version of the

ground truth since the sequence of the events witnessed

by each IDS sensor may be different from the ground

truth due to the sensor's false positive , false negative and

detection latency. Moreover, the errors in firewal l rules and

(Nessus) vulnerabil ity reports also contribute to distort the

ground truth .

In our experiments , we ask the BN-based tool two

978-1-4244-7501-8/101$26.00 ©2010 IEEE

TABLE 3. Pre-Deployment Ground Truth
L"lbcl Vulnerability

Node I rcachabilit)' (!mCnlel, WCbSCTVicc, Tep.SO)
Node -I nctworkScn'iccinfo(wcbScT\"cr. httpd,tcp.80,apachc)

Node 5 VulExists(\\'cbScr\'cr:CAN�2002-0392' ,hnpd,rcmolcExpioil. pnvEscalalion

Node 10 rcacabilily(wcbscTvcr,filcscT\'cr,rpc.IOOOOS

Node 12 vulExists(filcscT\'cr,\'ullD,molllltd,rclllotcExploit,privEscalalion)

Node 15 nClworkScrviccinfo(filc$cTvCr,1Il0tllltd,rpc.lOOOO5,root)

Node 17 caIlAcccssFilc(filc$cn"cr.root,writc,'/cxport')

Node 18 nfsExportlnfo(filcScfvcr:fcxport' ,writc.\\'cbScr\'cr)

Nodc 19 reachability(wcbscn'cr,filcScnw,nfsProtocol,nfsPort)

Nodc 2S nrs�lountcd(\\'orkstation:lusr local/share' ,filcScn'cr:/cxport' ,rcad)

TABLE 4. Good events and attack events

E"cnt I i\ lallory (i.c .. thc attackcr) sends probing p.1ckct HBI (aftcr TCI> 3-way handshakc) to port 80 of

wcbScr\'cr. but p.1ckct IBI fails.

E,'cnl 2 Good J>.1ckct IG I gcts into port &) of wcbScn·cr.

E"cnt 3 Good p.1ckct IG2 gCIS into port 80 of \\'cbScr\'cr.

E,'cnI4 i\lallory scnds probing J>.1ckct IB2 to wcbScr\'cr, but]:l.1ckcl NB2 fails.

E"cnt 5 Good p.1ckct NG3 gcts into lX>rt 80 of wcbScr\'cr.

E"cnt 6 Good p.1ckct NG4 gCIS into lX>rt 80 of \\'cbScr\'cr.

E"cnl 7 Good J>.1ckct NG5 gcls into Ix>rt &) of wcbScn·cr.

E"cllt 8 i\ lallory scnds probing p.1ckct NI33 to \\'cbScr\'cr: packct NI33 succccds.

E"cnt 9 i\lallory scnds probing J>.1ckct NB4 to thc RPC port of fileScr\'cr, but J>.1ckct #134 fails.

E\,cnt 10 Good p.1ckct NG6 gcts into thc RPC lX>rt of fiIeScr\'cr.

E"cnt II i\ lallory sends probing]l<1ckct NBS to thc rpc Ix>rt of filcScn'cr: J>.1ckct #135 succccds. Thc nctwork
is now in thc stalc spccificd by Nodc 23.

E"cllt 12 Gocxl p.1ckct NG7 gCIS into lhc RPC Ix>n of filcScr\'cr.

E,'cnt 13 Gocxl J>.1ckct NG8 gCts into thc RPC Ix>rt of fileScn·cr.

E"cnt 14 Gocxl p.1ckct NG9 gcts into thc RPC pon of fiIeSer\'cr.

E"cnt 15 Binary file X in directory" cxpon" is changcd by a good uscr.

E,'cnl 16 Binary filc X in directory" cxpon" is changcd by anothcr gocxl uscr.

E"cnt 17 i\lallory changcs file X in directory" c.xlx>rt" to install a Trojan horsc.

E"cnl 18 Binary filc Y in directory" c.xpon" is changcd by a gocxl uscr.

E"cllt 19 File X. thc Trojan horse. is cxccutcd by admin. 'Illc Trojan horsc cxccutcs codc on workStation
with I'OOt pri"ilcgc.

E,'cnt 20 Binary filc Y in dircctory .. c.xpon" is changcd by anothcr gocxl uscr.

E"cnt 21 File Y is e.'l:ccutcd by a regul:tr IIscr.

E"cnt 22 Binary filc Z in directory" c,xpon" is changcd by anothcr gocxl uscr.

E,'cnt 23 File Z is c.'l:ccutcd by a rcgular uscr.

questions at proper time points:

(Ql) Which machines are very l ikely to have been

compromised?

(Q2) Which exploits have happened but not been de­

tected yet? What alerts are missing?

These two questions are typically asked by the security

administrator. We evaluate the BN-based tool by compar­

ing its answers with the ground truth .

4.2 Experiment Settings

In our experiments , we adopt the attack scenario shown

in Fig . 1 and the corresponding BN shown in Fig . 9. We

have two types of ground truth: Pre-Deployment Ground

Truth , which addresses the pre-deployment vulnerabilities ,

and Post-Deployment Ground Truth , which focuses on

the post-deployment attack events . The Pre-Deployment

Ground Truth is shown in Table 3 . Note that Node 18 is a

false vulnerabil ity report which is mistakenly reported by

an imperfect vulnerabil ity scanner.

The Post-Deployment Ground Truth includes two types

of events: attack events and good events . In our settings ,

each experiment will involve different alert events , but all

the experiments will in fact have the same sequence of

interleaved attack events and good events . The good events

and attack events adopted in our experiments are l i sted in

Table 4. In our experiments , we adopt nine alerts and one

false negative as shown in Table 5 . Note that AE4 is a

false positive alert .

217 DSN 2010: Xie et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Label Semantics
TABLE 5. Alert .&.

AE 1 against Event 1: saying that packet #Bl matches a signature compromising webServer.

AE2 against Event 8: saying that packet #B3 matches a signature compromising webServer.

AF3 against Event 8 and #83. However, due to detection latency, this alert is raised after Event 13.

FNI False Negative against Event 11: the sensor did not raise any alert about #B5.

AE-1- false positive: saying that webServer runs a malicious NSF shell.

AES against event 15: saying that file X in directory ··'export" is changed.

AE6 against event 16: saying that file X in directory ··'export" is changed.

AE7 against event 17: saying that file X in directory "'export" is changed.

AE8 against event 17: saying that file X is a Trojan horse.

AE9 against event 19: saying that Trojan horse is being executed.

4.3 Simulation Experiments

Summary of all results: We have run six simulation

experiments . In each experiment , we adopt a different

sequence of ground truth and alert events . In other words ,

effects of imperfect IDS on the BN-based tool in these

experiments are different .

Through the six experiments , we compare the answers

from the BN-based tool to questions Q1 and Q2 with the

ones from the Referee . Even though the BN-based tool

does not always give the perfect answers , most of the

answers given by the BN-based tool is reasonably close to

the ground truth . Moreover, with more and more ground

truth revealed , the answers from the BN-based tool are

more and more closer to the truth . Furthermore , the BN­

based tool can effectively infer the missed false negative

alarm and mitigate the disturbance caused by an imperfect

IDS .

Experiment 1: In this experiment , we use the following

complete sequence of events: E1 ---+ AE1 (report, All) ---+

E2 ---+ E3 ---+ E4 ---+ E5 ---+ E6 ---+ E7 ---+ E8 ---+ AE2 (do

not report , AI2) ---+ AE3 (do not enter, AI3) ---+ E9 ---+ ElO

---+ Ell ---+ FN 1 (node 14 , do not report , AI4) ---+ E12 ---+

E1 3 ---+ AE3 (report, AI5) ---+ E14 ---+ E15 ---+ AE5 (report,

AI6) ---+ E16 ---+ AE6 ---+ E17 ---+ AE7 (do not report) ---+

AE8 (report , AI7) ---+ E18 ---+ E19 ---+ AE9 (report, AI8)

---+ E20 ---+ E2 1 ---+ E22 ---+ E23 .

In this sequence , ---+ represents the absolute time order

between events . Command "report" means that a new

evidence is visible to the BN-based tool . Command "do

not report" means that no new evidence visible to the BN­

based tool . "All" (Answer It) represents the first timepoint

when the Referee asks the BN-based tool to answer Q1 and

Q2 . "AI2" represents the second answer-it timepoint , etc .

The results of Experiment 1: As shown in Table 6 ,

"WEB" denotes webServer; "FS" denotes fileServer; "WS"

denotes workStation; "NFS" denotes "NFS shell". In this

table , each column represents (a) a timepoint when the

BN-based tool is asked to answer Q1 and Q2 , and (b)

the corresponding answers given by the Referee and the

BN-based tool at that specific timepoint .

The results from Experiment 1 show that the BN-based

tool can help the security administrator to find the most

l ikely compromised machine . As shown in Table 6, the

BN-based tool gives a reasonably correct answer at time­

point AI5 when alert AE3 is reported . At this timepoint ,

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

the BN-based tool tel ls the l ikelihood of webServer being

compromised is 89 .92% . At timepoint AI6 when alert

AE5 is visible , the BN-based tool shows the l ikelihood of

webServer being compromised is 92 .73 % . Therefore , the

BN-based tool are more confident about this conclusion .

Moreover, the BN-based tool shows the l ikelihood of file

server being compromised is 53 .04% at timepoint AI6 ,

a correct conclusion though a weak one . At timepoint

AI7 , BN's answer is more useful . When a Trojan horse

is detected , the BN-based tool is able to tell which one is

the real cause of the Trojan horse . As shown in Table

6, the BN-based tool derives that the l ikelihood of the

NFS shell attack being the real cause is 57.53% while

the l ikelihood of the mountd attack being the real cause

is 68 .93% which is much higher. Hence , the BN-based

tool suggests that the mountd attack is the real cause ,

which is a correct conclusion . At timepoint AI8 when

true alert AE9 is detected , the Referee can conclude that

workStation has been compromised . It can be seen that

the BN-based tool also gives the perfect answer (1 00%

WS) . Other probabil ity values remain the same as those at

timepoint AI7 .

The BN-based tool also detects the missed alert event .

In this experiment , the BN-based tool can tell that HIDS­

Alert is a missed alert . As shown in Table 6, the l ikelihood

that HIDS-Alert is true is 85 .06% even though no alert

is reported . Therefore , the BN-based tool can help the

security administrator to infer that the HIDS-Alert is most

l ikely missed . Nevertheless , we found that the BN-based

tool gives a wrong answer at timepoint AI7 by saying that

the l ikelihood of workStation being compromised is 60% ,

which is a weak false alarm .

Results of the Other Experiments: The other experi­

ments are similar to Experiment 1 except for the following

differences . (a) Experiment 2 lets false alert FN 1 have

substantial detection latency, i .e . , it is raised after Event

1 8 . The results show that the BN-based tool can generate

useful conclusions in most timepoints . (b) Experiment 3

lets the alert AE8 have detection latency and the results

show that the BN-based tool performs consistently well in

identifying delayed alerts . (c) Experiment 4 shows that the

BN-based tool can leverage additional types of evidence

beyond alerts and vulnerabil ity reports . The abil ity to use

extra evidence in a handy way is a major advantage of the

BN-based tool . In this experiment , the results show that

correlation evidence such as AE5 and the event that file

X is executed on workStation increases the l ikelihood

of workStation being compromised . (d) Experiment 5

shows that the BN-based tool has strong capabil ity in miti­

gating the disturbance generated by false positives: the BN­

based tool can give a correct answer even in the presence

of a false alert . In this experiment, we first let the false

alert , AE4 be raised , and true alert AE5 be raised later. The

218 DSN 2010: Xie et aL

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

TABLE 6. The results of EXDeriment 1
QI, All AIZ AI. AI'
Referee's Non, WEB WEB WEB; FS

BN's 83.13% WEB 83.13% WEB 83.13% WEB 83.13% WEB

85.06% lllDS..ALERT 85.06% lllDS..ALERT 85.06% lllDS..ALERT ·,u.14% FS

BN-based tool says that the l ikelihood of fileServer being

compromised is 74.8% , while the l ikelihood of NFS Shell

attack being enforced is 6 1 . 1 9% , which is much lower.

As confirmed by the Referee , the fileServer is the correct

answer. (e) Experiment 6 shows the perfect case . In this

experiment , there are no false positives and false negatives ,

and only AE2 has insignificant latency. The results show

that the BN-based tool performs extremely well in this

case .

4.4 Sensitivity Analysis

In order to make the BN-based tool practical in real­

time security analysi s , one question must be answered:

how sensitive is the BN-based tool to its CPT tables? Since

the CPT tables are generated based on human expertise ,

they cannot be the absolute truth; instead , they are only

approximate to the truth in the real world . Therefore , the

BN-based tool must be robust against reasonable (small)

changes on its CPT tables . In other words , the quality

of the answer given by the BN-based tool should not be

significantly affected by a slight changes on its CPT tables .

The most desirable sensitivity analysis should be holistic ,

i .e . , the combined effects of al l related parameters should

be considered in the analysi s . However, such sensitivity

analysis method is extremely difficult to develop . In our

work , we analyze the sensitivity of the BN-based tool in an

isolated way, i .e . , if there are multiple parameters related to

the answers , we only consider the effect of one parameter

at a time while keeping others constant .

In our experiments , we have carried out extensive sensi­

tivity analysis experiments by using the sensitivity analysis

tool , called SamIam [5] to check the sensitivity of the

answers from the BN-based tool to its related parameters .

When the BN-based tool generates an answer with some

probability, we use SamIam to reversely check the effects

of related CPT tables , i .e . , we change the probability

associated with an answer by 5% , 1 0% and 1 5% and check

the required changes on the related CPT tables .

We find out that in all these experiments , the changes in

CPT tables can only result in at most the same amount of

change on the answers reported by the BN-based tool . For

example, in order to generate +5% change on the answer

at time All (83 .l3%) , the minimum change required on

parameters is 5% . The same holds for a -5% change .

Therefore , the BN-based tool in our experiments is not

sensitive to the CPT tables in the sense that changes in

978-1-4244-7501-8/10/$26.00 ©201O IEEE

AIS Alfi AI7 AIS
WEB; FS WEB; FS WEB; FS; Trojan WEB; FS; Trojan; WS

89.92% WEB 92.73% WEB 97.23% WEB; +100.OW8

.. 1-3.10% FS 53.Q.:I.% FS; 51.39% WS 68.93% FS; 60% WS;

38.47% Trojan 100% Trojan;

57.53% NFS shell; 68.93% FS

mountd

CPT tables are not amplified on the answers given by the

BN-based tool .

5 Related work

Bayesian network techniques have been applied to

intrusion detection systems [4], [17], [25]. Our application

of BN is at a different level . Our work makes use of

the output of intrusion detectors and incorporates it into

a holistic security analysis framework . Our BN model

does not deal with low-level system events such as raw

IP packets , system cal l s , etc., which have already been

taken care of by various types of intrusion detectors .

Frigault et al. [10], [1 1] study how to use Bayesian

Network and attack graphs to measure network security

risk. Their work focuses on the pre-deployment planning

phase in the sense that the security metrics produced by the

BN reflect the inherent risk in a network . Our BN model

address a wider range of security anlysis , most importantly

the problem of real-time situation awareness which must

account for various types of run-time observations l ike IDS

alerts to answer the question of "what is really going on".

Attack graphs have been widely studied in the context

of enterprise security management , intrusion detection

and response , and security metrics [1 2], [1 3] , [9], [14],

[20], [2 1], [27]. Our work further extends the uti l ity of

attack graphs by constructing a well-founded Bayesian

network model that enables reasoning with uncertainty

for situation-awareness security analysi s . Dantu and Kolan

also construct Bayesian networks based on attack graphs

for risk management [6]. However, our Bayesian network

model is fundamentally different from theirs . Dantu and

Kolan use Bayesian networks to model the attacker's

behaviors , whereas we use Bayesian networks to model

uncertainties inherent in the causality relationships among

system conditions in an attack graph as well as run-time

observations . Our Bayesian networks model does not use

any attacker profiles .

Tang [24] applies Dempster-Shafter (DS) theory [7]

in fault-diagnosis for overlay networks . The focus of our

work is on analyzing cyber attacks which has very different

characteristics than faults , due to the exitence of malicious

players .

6 Conclusions

Graphical models are important tools for analyzing se­

curity events in enterprise networks . Although it may seem

219 DSN 2010: Xie et al.

20 1 0 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

straightforward to combine attack graphs and Bayesian

networks , one should not simply juxtapose these two and

think that they will work nicely together. By doing this ,

either the real semantics and inference power of Bayesian

networks are not fully uti l ized , or Bayesian networks

are used in an inappropriate manner. As pointed out in

previous sections , the key to using Bayesian networks

correctly is to identify and represent relevant uncertainties .

In this paper, we have built an example Bayesian

network model to capture uncertain relationships , and

experimental results show that using Bayesian networks

may bring in new opportunities for improved enterpri se

security analysi s . To the best of our knowledge , our work

is the first effort that investigates systematic approaches to

combining attack graphs and Bayesian networks .

7 Acknowledgement

This work was partial ly supported by Army Research

Office , contract W9 1 1 NF-07-C-0 1 0 1 . Xinming Ou was

partially supported by U .S . NSF under Grant No.07 1 6665 ,

and U .S . AFOSR under contract FA9550-09- 1 -0 1 38 .

Peng Liu was supported by ARO MURI on Computer­

aided Human Centric Cyber Situation Awareness , AFOSR

MURI FA9550-07 - 1 -0527 , NSF CNS-0905 1 3 1 , NSF CNS-

09 1 6469 , and AFRL FA8750-08-C-0 1 37 .

References

[1] NVD CVS S national vulnerability database cvss support.
http: //nvd.nist.gov/cvss.cfrn , April 2008 .

[2] Magnus Almgren , Ulf Lindqvist, and Erland Jonsson. A
multi-sensor model to improve automated attack detection.
In RAID 2008 . RAID , September 2008 .

[3] Paul Ammann , Duminda Wijesekera, and Saket Kaushik.
Scalable , graph-based network vulnerability analysis. In
CCS 2002 , Washington , DC , 2002 .

[4] Pablo Garcia Bringas. Intensive use of Bayesian belief
networks for the unified , flexible and adaptable analysis of
misuses and anomalies in network intrusion detection and
prevention systems. In 18th International Conference on
Database and Expert Systems Applications, 2007 .

[5] Hei Chan and Adnan Darwiche. When do numbers really
matters. Journal of Artificial Intelligence Research, pages
265-287 , 2002 .

[6] Ram Dantu and Prakash Kolan. Risk management using
behavior based bayesian networks. In IEEE International
Conference on Intelligence and Security Informatics, May
2005 .

[7] A.P. Dempster. Upper and lower probabilities induced by a
multivalued mapping. Ann . Statistics , 28: 325-339 , 1967 .

[8] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell
Whitley. Optimal security hardening using multi-objective
optimization on attack tree models of networks. In CCS '07,
2007 .

[9] Bingrui Foo , YU- Sung Wu , Yu-Chun Mao , Saurabh B agchi ,
and Eugene Spafford. Adepts: Adaptive intrusion response
using attack graphs in an e-commerce environment. In
DSN2005 , June 2005 .

[10] Marcel Frigault and Lingyu Wang. Measuring network

978- 1 -4244-75 0 1 -8/1 0/$26.00 ©20 1 O IEEE

security using bayesian network-based attack graphs. In
STPSA '08 , 2008 .

[11] Marcel Frigault, Lingyu Wang , Anoop Singhal , and Sushil
Jaj odia. Measuring network security using dynamic
bayesian network. In Proceedings of the 4th ACM workshop
on Quality of protection , 2008 .

[12] Saurabh B agchi Gaspar Modelo-Howard and Guy Lebanon.
Determining placement of intrusion detectors for a dis­
tributed application through bayesian network modeling. In
RAID 2008 . RAID , September 2008 .

[13] Kyle Ingols, Richard Lippmann , and Keith Piwowarski.
Practical attack graph generation for network defense. In
ACSAC 2006, Miami Beach , Florida, December 2006 .

[14] Sushil Jaj odia, Steven Noel , and Brian O ' B erry. Topological
analysis of network attack vulnerability. In V. Kumar,
J. Srivastava, and A. Lazarevic , editors, Managing Cyber
Threats: Issues, Approaches and Challanges , chapter 5 .
Kluwer Academic Publisher, 2003 .

[15] F. V. Jensen , S. L. Lauritzen , and K. G. Olesen. B ayesian
updating in causal probabilistic networks by local computa­
tions. Computational Statistics Quarterly , 4:269-282 , 1990 .

[16] Gene H. Kim and Eugene H. Spafford. The design and
implementation of tripwire: A file system integrity checker.
In CCS '94 , 1994.

[17] Christopher Kruegel , Darren Mutz , William Robertson , and
Fredrik Valeur. Bayesian event classification for intrusion
detection. In ACSAC '03 , December 2003 .

[18] Richard Lippmann , Kyle Ingols, Chris Scott, Keith Pi­
wowarski , Kendra Kratkiewicz , Mike Artz , and Robert
Cunningham. Validating and restoring defense in depth
using attack graphs. In MILCOM 2006, Washington , DC ,
U.S.A., October 2006 .

[19] Peter Mel l , Karen Scarfone, and Sasha Romanosky. A Com­

plete Guide to the Common Vulnerability Scoring System
Version 2 .0 . FIRST ' 07 , June 2007 .

[20] Steven Noel and Sushi! Jaj odia. Managing attack graph
complexity through visual hierarchical aggregation. In
Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 109-118,
New York, NY, USA , 2004.

[21] Xinming Ou, Wayne F. B oyer, and Miles A. McQueen. A
scalable approach to attack graph generation. In CCS 2006,
pages 336-345 , 2006 .

[22] Judea Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference . Morgan Kaufman , 1999 .

[23] Mike Schiffman , Gerhard Eschelbeck , David Ahmad , An­
drew Wright, and Sasha Romanosky. CVSS: A Common
Vulnerability Scoring System. National Infrastructure Advi­
sory Council (NIAC) , 2004.

[24] Yongning Tang and Ehab AI-Shaer. Sharing end-user
negative symptoms for improving overlay network depend­
ability. In DSN2009 , June 2009 .

[25] Alfonso Valdes and Keith Skinner. Adaptive, model-based
monitoring for cyber attack detection. In RAID 'OO, 2000 .

[26] Lingyu Wang , Steven Noel , and Sushi! Jaj odia. Minimum­
cost network hardening using attack graphs. Computer
Communications , 29: 3812-3824, November 2006 .

[27] Leevar Williams , Richard Lippmann , and Kyle Ingols.
Gamet: A graphical attack graph and reachability network
evaluation tool . In VizSEC '08 , 2008 .

220 DSN 20 1 0 : Xie et al.

