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Abstract 

Capturing the uncertain aspects in cyber security is 
important for security analysis in enterprise networks. 
However, there has been insufficient effort in studying what 
modeling approaches correctly capture such uncertainty, 
and how to construct the models to make them useful in 
practice. In this paper, we present our work on justifying 
uncertainty modeling for cyber security, and initial evi­
dence indicating that it is a useful approach. Our work is 
centered around near real-time security analysis such as 
intrusion response. We need to know what is really happen­
ing, the scope and severity level, possible consequences, 
and potential countermeasures. We report our current 
efforts on identifying the important types of uncertainty and 
on using Bayesian networks to capture them for enhanced 
security analysis. We build an example Bayesian network 
based on a current security graph model, justify our mod­
eling approach through attack semantics and experimental 
study, and show that the resulting Bayesian network is not 
sensitive to parameter perturbation. 

1 Introduction 

To carry out enterpri se security analysi s ,  graphical 

models capturing relationships among vulnerabil ities and 

exploits have become the main-stream approach [3], [ 1 3] ,  

[ 1 8], [2 1 ]. An attack graph i l lustrates possible multi -stage 

attacks in an enterprise network, typically by presenting 

the logical causality relations among multiple privileges 

and configuration settings . Such logical relations are deter­
ministic: the bad things will certainly happen in their worst 

forms as long as all the prerequisites are satisfied , and no 

bad things will happen if such conditions do not hold .  

While it i s  important to understand such logical relations , 

the deterministic nature has l imited their use in practical 

network defense , especially when the graphical models are 

to be used in real-time intrusion response . 
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Fig. 1. An example attack scenario. 

Let us look at an example ,  shown in Fig .  I, which i s  

taken from Ref. [2 1 ]. Suppose the following potential at­

tack paths are discovered after analyzing the configuration . 

An attacker first compromises webServer by remotely 

exploiting vulnerabil ity CVE-2002-0392 to get local 

access on the server. Since webServer is al lowed to 

access fileServer through the NFS protocol , he can 

then try to modify data on the file server. There are two 

ways to achieve this .  If there are vulnerabil ities in the 

NFS service daemons , he can try to exploit them and get 

local access on the machine; or if the NFS export table 

is  not set up appropriately, he can modify files on the 

server through the NFS protocol by using programs l ike 

NFS Shelll. Once he can modify files on the file server, 

the attacker can install a Trojan-horse program in the 

executable binaries on f ileServer that is  mounted by 

machine workStation. The attacker can now wait for an 

innocent user on workStation to execute it and obtain 

control on the machine . A portion of the corresponding 

attack graph is  shown in Figure 2 .  

The node P4 and its parents Pi, P2, P3 express the 

1. A program thaI provides user-level access to an NFS server 
(flp:/ /ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz) 
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Fig. 2. A portion of the example graph. 

causality relation in the NFS Shell attack: if an attacker 

compromises the web server (pd, the web server can 

access the file server through the NFS protocol (P2), and 

the file server exports a partition to the web server (P3), 
then the attacker will be able to launch an NFS Shell attack 

to access files on the file server (P4). Suppose we want to 

use this piece of information in real-time security analysi s .  

When we suspect the web server has been compromised , 

with how much confidence can we say that the files on the 

file server have been compromised? The answer is far less 

certain than the deterministic logic can provide . How can 

we know whether the attacker has chosen to launch this 

attack? Even if he did so , how can we know that the attack 

has succeeded? Moreover, how can we account for the real­

time observations that may be relevant? For example,  a file 

system integrity checker such as Tripwire [ 16] may report 

that certain files have been modified . How shall we update 

our belief about possible attacks given this observation? 

Real-time security analysis i s  a far more imprecise 

process than deterministic reasoning . We do not know 

the attacker's choices , thus there is the uncertainty from 

unknown attacker behaviors . Cyber attacks are not always 

guaranteed to succeed , thus there is the uncertainty from 

the imperfect nature of exploits . The defender's observa­

tions on potential attack activities are l imited , and as a 

result we have the uncertainty from false positives and fal se 

negatives of intrusion detection system (IDS) sensors . Nev­

ertheless ,  the logical causality encoded in a deterministic 

attack graph is  invaluable to understand security events , 

and will be useful for building practical network defense 

tools if we can appropriately account for the uncertainty 

inherent in the reasoning process .  

Recent years have seen a number of attempts at  using 

Bayesian networks to model such uncertainty in security 

analysis [2], [ 10], [II], [ 12]. A Bayesian network (BN) is  

a graphical representation of cause-and-effect relationships 

within a problem domain .  More formally, a Bayesian 

network is a Directed Acyclic Graph (DAG) in which: 

the nodes represent variables of interest (propositions); the 

directed l inks represent the causal influence among the 
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variables; the strength of an influence is represented by 

conditional probabil ity tables (Cn) . For example,  if we 

imagine that the graph structure in Figure 2 is  a Bayesian 

network , then node P4 could have the following cn 

associated with it .  
PI P2 P3 P4 
T T T 0.8 

otherwise 0 

Essentially this cn indicates that if all of P4'S parents 

are true , the probabil ity of P4 being true is 0.8; in all other 

cases the probabil ity is a (P4 is false) . 

Bayesian Network is a powerful tool for real-time 

security analysis if a BN model can be built that reflects 

reality. However, it is not trivial to construct a Bayesian 

Network from an attack graph . 

First , it is difficult to model the uncertainty inherited 

in security analysi s .  For example ,  we know that due to 

the uncertainty from the attacker's choice , P4 may not 

become true after all of Pi, P2, and P3 are true simply 

because the attacker did not choose to launch the attack. 

There may be other reasons why P4 does not become true 

after all its parents are true - for example,  the attacker 

may have chosen to launch the attack but the attack fai led 

due to the difficult nature of the exploit. Such uncertainty 

will have to be encoded in the same cn associated 

with P4. Thus the cn number 0.8 will have a number 

of contributing factors in it, which makes the generation 

and maintenance of the cn parameters a difficult task. 

For example,  when we see the same attack activity in 

other parts of the network , we may want to increase the 

l ikelihood that an attacker may choose to use this attack.  

But in the unmodified graph structure there is  no easy way 

to separate thi s attacker-choice uncertainty from the other 

factors in the cn number of 0.8. As a result this type 

of correlation cannot be conducted elegantly. This is just 

one example problem we have discovered in the l iterature 

on building BN models from attack graphs for security 

analysi s .  We believe a more disciplined BN construction 

methodology is needed. 

Second , cyber security analysi s ,  unlike other more well­

behaved problem domains , does not naturally lend itself 

to statistical analysi s .  In general , we do not have the 

ground truths in real traces from which we can learn 

the large number of cn parameters , and the attackers 

are constantly adapting . As a result, the cn parameters 

need to be produced from often vague and subjective 

judgments . However, it i s  infeasible to ask a human expert 

to assign every cn parameter for every BN model . The 

vast majority of these numbers need to be computed 

automatically from various sources that reflect various 

types of uncertainty in cyber security. A BN model that 

modularizes and separates the various types of uncertainty 

will make this process easier. Since those numbers are 

imprecise in nature , the results of BN analysis should not 

212 DSN 2010: Xie et al. 



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN) 

II 
11 15 16 9 

T T T l 

otherwise 0 

Fig. 3. Attack structure and CPT at node 9. 

be too sensitive to cn parameters . 

While previous studies have proposed various ways of 

building BN models from attack graphs , there are a number 

of potential problems in the current approaches .  In this  

paper, we present a BN modeling approach that we believe 

possesses the following properties: 

1) The graphical structure shal l modularize: it should 

separate various types of uncertainty and avoid min­

gling different types of uncertainty in the same cn. 

2) The majority of cn parameters shall be computed 

automatically from reali stic data sources . 

3) The BN model should not be too sensitive to pertur­

bation on the cn parameters . 

How to build a BN model for practical security analysis 

i s  a non-trivial problem . Extensive research must be done 

to justify the BN modeling approach and to study its 

applicability in real-world security analysi s .  

2 Capturing uncertainty in security analysis 

In this section we provide a taxonomy of uncertainty in 

cyber security, describe what we believe the best way to 

capture them in a BN model , and explain how they can be 

used in real-time security analysi s .  

2.1 Uncertainty in attack structure 

Figure 3 shows another portion of the full attack graph . 

Let us look at the following nodes .  1 )  Node 1 1 : The 

attacker obtains network access to webServer on tcp/80; 

2) Node 15 :  The program httpd i s  a service running 

on webServer as user apache, l i stening on tcp/80; 3) 

Node 1 6: The vulnerabil ity CAN-2002-0392 exists in 

the httpd program on webServer; and 4) Node 9: The 

attacker obtains code execution privilege on webServer. 

The relationship of these nodes is simple: "nodes 1 1 ,  1 5 ,  

and 1 6  altogether enable node 9". Hence , we can obtain the 

basic attack structure , as shown in Fig .  3 .  The logic AND 

can be represented using Bayesian network techniques via 

the conditional probabi l ity table (Cn) stored at node 9. 

Essentially, attacks can only happen by obeying both of 

the two mandates: 1 )  Physical path: attacks can only occur 

by following network connectivity and reachabil ity; this i s  

the physical l imit  for attacks . 2)  Attack structure: attacks 

can only happen by exploiting some vulnerabil ity, with 

pre-conditions enabling the attacks and post-conditions as 

the consequence (effect) . Careful inspection reveals that 

almost all attack graphs to date embed the physical path 

and attack structure information in the models ,  though 

the graph generation algorithms themselves may or may 

978-1-4244-7501-8/10/$26.00 ©2010 IEEE 

11 15 16 9 

T T T 0.8 
otherwise 0 

Fig. 4. Attack structure and modified CPT that 

captures uncertainty. 

not have considered doing so explicitly. Furthermore , it i s  

noted that while the physical paths are obviously network 

specific, the attack structure can be abstract knowledge 

without encoding any network specific information (e.g. 
particular hosts) . Therefore , the abstract knowledge can be 

modeled and managed independent of specific networks . 

The attack structures contain inherent uncertainty, since 

most attacks do not have 1 00% guarantee of success . Given 

that nodes 1 1 , 1 5 ,  and 16 are all true , i s  it absolutely 

the case that node 9 is  achieved by an attacker? More 

generally, knowing that there is a vulnerabil ity in a net­

work service accessible to an attacker, can the attacker 

absolutely obtain privilege on the server? In reality, the 

answer is often mixed . For example,  National Vulnerabil ity 

Database (NVD) [ 1 ]  publi shes a large number of software 

vulnerabilities , many of which are categorized as remote 

vulnerabil ities that can cause privilege escalation . But 

undoubtedly there are variations in the difficulty of exploit 

among those vulnerabilities . For a particular vulnerabil ity, 

such as CAN-2002-0392 in the example ,  we may know 

that a working exploit is already publicly available and it 

works most but not all of the time . Given that , maybe we 

should change the cn accordingly, as shown in Fig .  4. 

There exist already standardized metrics on the exploit 

difficulty of vulnerabilities . For example,  CVSS [1 9], [23]  

is  a standard for specifying vulnerabil ity attributes .  The 

base metric of Access Complexity (AC) descri bes the 

complexity of exploiting the vulnerabil ity and can take 

the values of "high", "medium", or "low". This metric 

indicates the success l ikelihood of an exploit when all the 

necessary pre-conditions are met and an attacker launches 

the exploit. The AC metric is part of the Basic metrics in 

CVSS which are already maintained by NVD for every 

reported vulnerabil ity. Hence we can use this existing data 

source to derive the cn parameter (Table 1 ) .  Another 

relevant CVSS metric is the Exploitability (E) metric from 

the Temporal category. This metric describes the current 

state of exploit and can take the values of "unproven", 

"proof-of-concept", "functional", or "high". The E metric 

may change over time when new exploits are published or 

new attack data are collected . This metric would al so be 

useful to derive the cn parameter - a vulnerability with 

"high" exploitabil ity is more l ikely to yield a successful 

attack than a "proof-of-concept" exploitabil ity. However, 

NVD currently does not maintain any Temporal metric ,  

including the E metric .  These CVSS metrics are good 
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TABLE 1. CVSS AC metrics and success like­

lihoods 
AC metric Success Likelihood 
high 25% 
medium 75% 
low 85% 

TABLE 2 O· t Iscre e I Jro b b·lity levels a I 
Name Value 
certain 100% 
probable 85% 
expected 75% 
unlikely 25% 
improbable 15% 
impossible 0% 

sources to derive the CPT parameters for attack structures 

that involve exploiting software vulnerabilities . We can 

specify a function that maps the vulnerability's AC and/or 

E metric to the CPT parameter of the corresponding node 

in the BN,  l ike node 9 above.  We currently only use the 

AC metric in Table 1 .  

For attack structures that are not about exploiting 

software vulnerabilities ,  we can specify the l ikelihood of 

success directly in the attack-structure knowledge base . 

We also use discrete levels similar to those found in 

CVSS metrics , as shown in Table 2 .  For example ,  the 

attack structure that leads to node P4 in Figure 2 is an 

NFS Shell attack .  For this specific type of exploit we can 

estimate its success l ikelihood when all the preconditions 

are met . Here the number 75% will be used as the CPT 

parameter. We believe that providing these numbers in such 

a discrete manner is  reasonable , since the numbers are 

already imprecise: what is  the difference between "75%" 

and "80%" to a human? In Section 4 we demonstrate 

that the resulting BN is not sensitive to input parameter 

purturbation , further justifying the use of discrete levels in 

deriving CPT parameters . 

2.2 Uncertainty about attacker actions 

This is the unique and perhaps the biggest uncertainty in 

real-time security analysi s .  Suppose for the simple attack 

structure (as shown in Fig .  3 and 4) we have used CVSS 

to derive the success l ikelihood of the attack.  Then can 

we use that number as the CPT parameter? If what we 

want to know is "what could happen" then the answer 

is yes . This is the typical kind of questions asked during 

pre-deployment planning phase , and the Bayesian network 

model can sufficiently answer them . However, the above 

node structure is not sufficient for real-time analysi s .  In 

real-time analysi s ,  even when all the prerequisites become 

true , there may not be an attacker there . For analogy, 

if the door is  open to a potential attacker, the attack 

may not happen until an attacker approaches the door. 

Since what we care about in real-time analysis is "what's 

really happening", the key difference from pre-deployment 

planning is that we need to model whether an attack is  
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happening or not. This is the unique uncertainty inherent 

in real-time analysi s .  To this end , we introduce a new kind 

of node in our Bayesian network models ,  called the attack 

action node (AAN) . 

An attack action node is introduced as an additional 

parent node for those important attacks (Fig .  5) . An AAN 

is an artifact introduced by the modeler for better modeling 

power and clarity. "AAN is  true" means the attacker action 

is  present , and other prerequisites become effective . "AAN 

is  false" means no attacker action is  present . This will 

"block" all other prerequisites from being effective . In 

other words , the CPT at node 9 will have a zero probabil ity 

for al l rows where AAN is false , as shown below. 

11 15 16 AAN 9 

T T T T 0.8 
otherwise 0 

Not all attack nodes need an AAN; typically only those 

"important" nodes in Bayesian network models should be 

equipped with AAN nodes .  For example,  those first (or 

very early) stepping stones in multi-step attacks should 

have AAN nodes associated with them to indicate whether 

or not attacks are ongoing . As another example,  an AAN 

is not necessary when a privilege does not need an attacker 

to take any action , e.g. a privilege that can be "naturally" 

obtained as a result of NFS file-sharing semantics . 

The next question is :  how can one obtain information 

about the AAN states? Knowing whether or not the attack 

is ongoing will greatly help the subsequent reasoning 

process . First , the CPT at the AAN node represents the 

prior l ikelihood of an attack .  This number can be set 

globally by the user. For example,  if this type of attack 

has been seen recently, the user may decide to increase 

the AAN node's prior l ikelihood for all such attacks to 

indicate an increased threat level . Second , many security 

monitoring systems can provide evidence of possible attack 

activities and these observations indicate an increased 

posterior l ikelihood of the attack .  To model this correlation 

we introduce a sensor node as the child of an AAN 

whenever a sensor is available that can report potential 

attack activity of this sort .  In our Bayesian network models ,  

which focus o n  high-level reasoning rather than low-level 

data processing , the sensor node can hardly be a physical 

tel l-tale sensor. Most l ikely it captures aggregated results 

from low-level sensors (e .g .  IDS sensors) , which indicate 

the presence of certain attacks . The reliability of the sensor 

node is  reflected in its local CPT, with false positive and 

false negative probabilities explicitly expressed (Fig .  5 ) .  

This is  one example of the local observation model to be 

discussed in the next section. 

2.3 Uncertainty about alerts 

It is well known that alerts coming from intrusion 

detection systems tend to have some amount of false 

positives . In thi s work , we will not model raw alerts 
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Fig. 5. Uncertainty related to attacker action. 
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Fig. 6. Local observation model. 

directly. Instead , we will only input relevant correlated 

alerts that can help high-level reasoning . Nonetheless ,  the 

correlated alerts may sti l l  contain a fair amount of fal se 

positives . If for some reason we know that the correlated 

alerts come from a high-fidelity alert correlation process , 

we may impose high confidence level upon them . Lower 

confidence will be put otherwise . 

We propose to use a local observation model (LOM) 

to model such uncertainty about alerts . As shown in 

Fig .  6 ,  for states that can be inferred from imperfect 

sensors , we introduce a pair of nodes: the ActualState 

node and the Observation node . The ActualState 

node is not observable itself. The Observation node 

is a direct chi ld of the ActualState node , and the 

Observation node provides observations to infer the 

true state of the ActualState node . Suppose both the 

ActualState node and the Observation node are 

binary, and the en associated with the Observation 

node represents how the ActualState node will affect 

the Observation node . In this en, a false positive 

probabil ity is  inherently included . 

A concrete evidence about node Observation will 

change the posterior probability of node ActualState 

by computing P(ActualState I Observation=True) .  This kind 

of "backward" computation is  routine in hidden Markov 

models (HMM) , and Bayesian networks can naturally 

execute such kind of inference . Further, such computations 

can be executed in some fairly efficient manner [ 15][22]. 

2.4 Modularized CPT computation 

There are well-studied BN modeling techniques that can 

modularize various sources of uncertainty in the compu­

tation of en parameters . We provide two examples that 

may be directly applied to cyber security analysi s .  

The first example is  called "Noisy-And", and i t  extends 

from the determini stic AND logic .  With deterministic 

AND (see Fig .  7) , node Escalation will become True 
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only when both its parents NetAccess and VulnExist 

are True . This says that Escalation will never happen 

otherwise . A Noisy-And however does not imply that a 

child is definitely false if one of the parents is false . 

To model the "leaky" chances that Escalation may 

sti l l  happen without requiring all of the parents to be 

True , "leaky" parameters are introduced . In particular, each 

parent has an associated (enabling) influence to the child 

that is  represented by a probability. For example,  suppose 

the vulnerabil ity scanner does not report any findings 

(VulnExist i s  False) . In practice , however, there could 

be zero-day vulnerabil ities in a piece of software . Let 

0 .2 represent the l ikelihood of the existence of zero­

day vulnerabil ity in the software under concern . In other 

words , 0 .2 is the leaky chance for the vulnerabil ity to 

be actually true (though reported False) . Hence , the leaky 

parameter P(EI-,v) = 0.2 represents the l ikelihood that 

vulnerabil ity scanner misses a true vulnerabil ity. We can 

define another leaky parameter P(EI---,N) = 0 .4,  which 

could mean the l ikelihood the attacker is  able to circumvent 

the firewall to gain network access , even when attack-graph 

analysis shows that there is no network path . 

The second example is called "Noisy-Or" and it extends 

from the deterministic OR logic .  With deterministic OR 

(see Fig .  8 ) ,  node accessFile i s  True as long as one 

or more of its parents become True . A Noisy-Or logic 

however does not imply that a child is  definitely true if 

one of the parents is true . 

As in Noisy-And , the leaky parameters are introduced 

to model the "leaky" chances that accessFile may not 

always be True when one or more of its parents is True . For 

example,  in Fig .  8 ,  let P(---,accessFileINFSShell) = 0.3, 

which means that NFSShell being True does not nec­

essarily imply that accessFile is True; there is sti l l  a 

30% chance that accessFile will not happen . Similarly, 

we can define another (inhibiting) leaky parameter as 

P(---,accessFilelexecCode) = 0.2. 

It is noted that in "Noisy-And" and "Noisy-Or" logic ,  

the leaky parameter is  defined separately and indepen-

215 DSN 2010: Xie et al. 



2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN) 

dently. This independence assumption simplifies the speci­

fication of the parameters and enables simple and efficient 

calculation of the probability distribution . As shown in 

Fig .  7 and Fig .  8 ,  the CPTs at nodes Escalation 

and accessFile have 8 entries . However, just two 
leaky parameters are specified; all other entries can be 

easily computed from these parameters . For instance , 

P(EIN = F, V = F) = 0.2 x 0.4 = 0.08. Further, the 

independent assessment of the leaky parameters is more 

intuitive for human experts , since humans are known to 

perform relatively better in a "case-by-case" manner. It 

would be an extremely daunting task for human experts 

to assess situations considering different combinations of 

multiple factors , which is exponential with the number of 

parents and also non-intuitive . The independence assump­

tion alleviates the difficulty. 

2.5 Summary 

Our BN modeling approach separates three important 

types of uncertainty in real-time security analysis: the 

uncertainty on attack success , the uncertainty of attacker 

choice , and the uncertainty from imperfect IDS sensors . 

This enables computing CPT parameters from existing 

data sources such as NYD/CYSS .  The more advanced BN 

modeling techniques such as Noisy-And and Noisy-Or can 

further modularize the sources of uncertainty within a CPT. 

Our BN modeling approach satisfies the first two desirable 

properties described in Section 1 .  

3 Implementation 

In this section we describe how to build a Bayesian 

network from an attack graph tool . We use the MulYAL 

attack graph toolkit [2 1 ]  for our implementation , but the 

approach can extend to other attack graphs with similar 

semantics [8], [ 1 3] ,  [26]. The MulYAL reasoning system 

can incorporate CYSS metrics from NYD data sources and 

output the AC metric .  We use the same example as in 

Section 1 to describe how we derive the BN structure from 

the attack graph . 

3.1 Adding new nodes 

Attack Action Node (AAN). As discussed in section 2 .2 ,  

we need to introduce the AAN node to model the existence 

of an attacker actively exploiting the system . Thus , for 

some nodes in the graph model that represent conse­

quences of an attack ,  we may put an AAN node as its 

parent . The attack's post-condition will become true only 

if al l its pre-conditions are met and the AAN node is 

true . This changes the graph's semantics from "what could 

happen" to "what has happened". A separate AAN is  used 

for each selected attack node , rather than sharing a single 

AAN node among multiple attack nodes . This is  because 

the attacker may choose one of many possible attack paths . 

978-1-4244-7501-8/101$26.00 ©2010 IEEE 

Fig. 9. An example Bayesian network model. 

Local Observation Model (LOM). Section 2 .3 intro­

duces the notion of local observation model that can be 

used to incorporate the various detectors used in cyber se­

curity, such as IDS . In real-time security analysi s ,  there are 

methods to monitor and detect potential security threats . 

For example ,  an IDS could be used to detect the exi stence 

of an attacker and a file system monitor such as Tripwire 

can be used to detect file-system modifications . However, 

the observation or detector may not always be accurate . In 

our LOM ,  a new node i s  introduced to model the inaccurate 

observation (detectors) , and an arc from the actual state to 

the observation state represents the fact that the observation 

is  influenced by the actual state . 

Fig .  9 shows the generated BN structure for the attack 

scenario shown in Fig .  1 .  Using conditional probabili­

ties (and Noisy-And and Noisy-Or semantics) , there is  

no di stinction between AND/OR nodes any more . Node 

22 indicates that the NFS Shell attack against the file 

server has been accompli shed by the attacker. Obviously, 

if there is  no attacker, no attack can be accompli shed . 

So we introduced an AAN node for node 22 . When an 

attacker is present and sending the file server an NFS shell 

exploit packet , this action could be detected by a network­

based IDS , such as Snort .  Thus we introduced an LOM 

observation node 21 so that whenever the IDS reports a 

suspected NFS exploit packet , this node will be true . If the 

attacker successful ly modified the files through the exploit, 

node 24 will be true . In this case , a Tripwire monitor could 

report a suspicious file modification . Thus we added an 

LOM observation node Tripwire to capture this event . 

3.2 Determining the CPT tables 

Each node in a Bayesian network needs to be associated 

with a CPT which is the probabil ity distribution of the 

node's possible states conditioned on the parents' states . 

For a node with no parent (root nodes) , the CPT is 
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the node's prior probabil ity distribution . By adopting the 

Noisy-Or and Noisy-And techniques discussed in Sec­

tion 2, the CPT computation can be reduced to obtaining 

certain l ikelihood values associated with individual condi­

tions , such as the difficulty level of exploiting a vulner­

ability, the l ikelihood that a piece of software contains a 

zero-day vulnerabil ity, etc. Many of them can be derived 

from currently-available data sources ,  such as the National 

Vulnerabil ity Database , which provides various metrics 

for security vulnerabil ities in the CVSS format. In our 

implementation , we assign the CPT values based on the 

values from Table 2. We use the exact values corresponding 

to the l ikelihood such as certain and impossible and 

use the middle values of the ranges corresponding to other 

l ikelihood . For example ,  we use value 20% to reflect the 

l ikelihood for unlikely. 

However, there are sti l l  CPT entries that would rely on 

human experts to fill  in ,  such as the false positive and false 

negative rates for IDS detectors , the a priori l ikelihood 

for attacks , etc . We can have the experts specify those 

conditional probabilities using the discrete values given in 

Table 2. In this work , we assign those levels manually 

based on our understanding of the security problems . 

4 Experimental Results 

Although the CPT tables of a BN-based security anal­

ysis tool are often determined by human experts , the 

effectiveness of the BN-based security analysis tool must 

be evaluated in an objective way. 

4.1 Evaluation Methodology 

In our experiments , we want to check if the BN­

based tool can help the security administrator in security 

analysi s .  We evaluate the performance of a BN-based tool 

by comparing its outputs with a Referee's . The Referee 

knows all the ground truth and is absolutely correct . 

In our experiments , the ground truth is a fully ordered 

sequence of events; the Referee has complete and perfect 

knowledge on which events are malicious and which events 

are legitimate . The order of the events is determined by 

the start time of the events . For simplicity, we assume 

that each event will be instantly finished . In this way, we 

ignore the differences among event durations . The BN­

based tool can only access the information generated by 

IDS sensors , which is  already readily avai lable to the 

security administrator. Note that in our experiments , the 

BN-based tool actually sees a distorted version of the 

ground truth since the sequence of the events witnessed 

by each IDS sensor may be different from the ground 

truth due to the sensor's false positive , false negative and 

detection latency. Moreover, the errors in firewal l rules and 

(Nessus) vulnerabil ity reports also contribute to distort the 

ground truth . 

In our experiments , we ask the BN-based tool two 
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TABLE 3. Pre-Deployment Ground Truth 
L"lbcl Vulnerability 

Node I rcachabilit)' (!mCnlel, WCbSCTVicc, Tep.SO) 
Node -I nctworkScn'iccinfo(wcbScT\"cr. httpd,tcp.80,apachc) 

Node 5 VulExists(\\'cbScr\'cr:CAN�2002-0392' ,hnpd,rcmolcExpioil. pnvEscalalion 

Node 10 rcacabilily(wcbscTvcr,filcscT\'cr,rpc.IOOOOS 

Node 12 vulExists(filcscT\'cr,\'ullD,molllltd,rclllotcExploit,privEscalalion) 

Node 15 nClworkScrviccinfo(filc$cTvCr,1Il0tllltd,rpc.lOOOO5,root) 

Node 17 caIlAcccssFilc(filc$cn"cr.root,writc,'/cxport') 

Node 18 nfsExportlnfo(filcScfvcr:fcxport' ,writc.\\'cbScr\'cr) 

Nodc 19 reachability(wcbscn'cr,filcScnw,nfsProtocol,nfsPort) 

Nodc 2S nrs�lountcd(\\'orkstation:lusr local/share' ,filcScn'cr:/cxport' ,rcad) 

TABLE 4. Good events and attack events 

E"cnt I i\ lallory (i.c .. thc attackcr) sends probing p.1ckct HBI (aftcr TCI> 3-way handshakc) to port 80 of 

wcbScr\'cr. but p.1ckct IBI fails. 

E,'cnl 2 Good J>.1ckct IG I gcts into port &) of wcbScn·cr. 

E"cnt 3 Good p.1ckct IG2 gCIS into port 80 of \\'cbScr\'cr. 

E,'cnI4 i\lallory scnds probing J>.1ckct IB2 to wcbScr\'cr, but ]:l.1ckcl NB2 fails. 

E"cnt 5 Good p.1ckct NG3 gcts into lX>rt 80 of wcbScr\'cr. 

E"cnt 6 Good p.1ckct NG4 gCIS into lX>rt 80 of \\'cbScr\'cr. 

E"cnl 7 Good J>.1ckct NG5 gcls into Ix>rt &) of wcbScn·cr. 

E"cllt 8 i\ lallory scnds probing p.1ckct NI33 to \\'cbScr\'cr: packct NI33 succccds. 

E"cnt 9 i\lallory scnds probing J>.1ckct NB4 to thc RPC port of fileScr\'cr, but J>.1ckct #134 fails. 

E\,cnt 10 Good p.1ckct NG6 gcts into thc RPC lX>rt of fiIeScr\'cr. 

E"cnt II i\ lallory sends probing ]l<1ckct NBS to thc rpc Ix>rt of filcScn'cr: J>.1ckct #135 succccds. Thc nctwork 
is now in thc stalc spccificd by Nodc 23. 

E"cllt 12 Gocxl p.1ckct NG7 gCIS into lhc RPC Ix>n of filcScr\'cr. 

E,'cnt 13 Gocxl J>.1ckct NG8 gCts into thc RPC Ix>rt of fileScn·cr. 

E"cnt 14 Gocxl p.1ckct NG9 gcts into thc RPC pon of fiIeSer\'cr. 

E"cnt 15 Binary file X in directory" cxpon" is changcd by a good uscr. 

E,'cnl 16 Binary filc X in directory" cxpon" is changcd by anothcr gocxl uscr. 

E"cnt 17 i\lallory changcs file X in directory" c.xlx>rt" to install a Trojan horsc. 

E"cnl 18 Binary filc Y in directory" c.xpon" is changcd by a gocxl uscr. 

E"cllt 19 File X. thc Trojan horse. is cxccutcd by admin. 'Illc Trojan horsc cxccutcs codc on workStation 
with I'OOt pri"ilcgc. 

E,'cnt 20 Binary filc Y in dircctory .. c.xpon" is changcd by anothcr gocxl uscr. 

E"cnt 21 File Y is e.'l:ccutcd by a regul:tr IIscr. 

E"cnt 22 Binary filc Z in directory" c,xpon" is changcd by anothcr gocxl uscr. 

E,'cnt 23 File Z is c.'l:ccutcd by a rcgular uscr. 

questions at proper time points: 

(Ql) Which machines are very l ikely to have been 

compromised? 

(Q2) Which exploits have happened but not been de­

tected yet? What alerts are missing? 

These two questions are typically asked by the security 

administrator. We evaluate the BN-based tool by compar­

ing its answers with the ground truth . 

4.2 Experiment Settings 

In our experiments , we adopt the attack scenario shown 

in Fig .  1 and the corresponding BN shown in Fig .  9. We 

have two types of ground truth: Pre-Deployment Ground 

Truth , which addresses the pre-deployment vulnerabilities , 

and Post-Deployment Ground Truth , which focuses on 

the post-deployment attack events . The Pre-Deployment 

Ground Truth is shown in Table 3 .  Note that Node 18 is a 

false vulnerabil ity report which is mistakenly reported by 

an imperfect vulnerabil ity scanner. 

The Post-Deployment Ground Truth includes two types 

of events: attack events and good events . In our settings , 

each experiment will involve different alert events , but all 

the experiments will in fact have the same sequence of 

interleaved attack events and good events . The good events 

and attack events adopted in our experiments are l i sted in 

Table 4. In our experiments , we adopt nine alerts and one 

false negative as shown in Table 5 .  Note that AE4 is a 

false positive alert . 
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Label Semantics 
TABLE 5. Alert .&. 

AE 1 against Event 1: saying that packet #Bl matches a signature compromising webServer. 

AE2 against Event 8: saying that packet #B3 matches a signature compromising webServer. 

AF3 against Event 8 and #83. However, due to detection latency, this alert is raised after Event 13. 

FNI False Negative against Event 11: the sensor did not raise any alert about #B5. 

AE-1- false positive: saying that webServer runs a malicious NSF shell. 

AES against event 15: saying that file X in directory ··'export" is changed. 

AE6 against event 16: saying that file X in directory ··'export" is changed. 

AE7 against event 17: saying that file X in directory "'export" is changed. 

AE8 against event 17: saying that file X is a Trojan horse. 

AE9 against event 19: saying that Trojan horse is being executed. 

4.3 Simulation Experiments 

Summary of all results: We have run six simulation 

experiments . In each experiment , we adopt a different 

sequence of ground truth and alert events . In other words , 

effects of imperfect IDS on the BN-based tool in these 

experiments are different . 

Through the six experiments , we compare the answers 

from the BN-based tool to questions Q1 and Q2 with the 

ones from the Referee . Even though the BN-based tool 

does not always give the perfect answers , most of the 

answers given by the BN-based tool is reasonably close to 

the ground truth . Moreover, with more and more ground 

truth revealed , the answers from the BN-based tool are 

more and more closer to the truth . Furthermore , the BN­

based tool can effectively infer the missed false negative 

alarm and mitigate the disturbance caused by an imperfect 

IDS . 

Experiment 1: In this experiment , we use the following 

complete sequence of events: E1 ---+ AE1 (report, All) ---+ 

E2 ---+ E3 ---+ E4 ---+ E5 ---+ E6 ---+ E7 ---+ E8 ---+ AE2 (do 

not report , AI2) ---+ AE3 (do not enter, AI3) ---+ E9 ---+ ElO 

---+ Ell ---+ FN 1 (node 14 ,  do not report , AI4) ---+ E12 ---+ 

E1 3 ---+ AE3 (report, AI5) ---+ E14 ---+ E15 ---+ AE5 (report, 

AI6) ---+ E16 ---+ AE6 ---+ E17 ---+ AE7 (do not report) ---+ 

AE8 (report ,  AI7) ---+ E18 ---+ E19 ---+ AE9 (report, AI8) 

---+ E20 ---+ E2 1 ---+ E22 ---+ E23 . 

In this sequence , ---+ represents the absolute time order 

between events . Command "report" means that a new 

evidence is visible to the BN-based tool . Command "do 

not report" means that no new evidence visible to the BN­

based tool . "All" (Answer It) represents the first timepoint 

when the Referee asks the BN-based tool to answer Q1 and 

Q2 . "AI2" represents the second answer-it timepoint , etc . 

The results of Experiment 1: As shown in Table 6 ,  

"WEB" denotes webServer; "FS" denotes fileServer; "WS" 

denotes workStation; "NFS" denotes "NFS shell".  In this 

table ,  each column represents (a) a timepoint when the 

BN-based tool is asked to answer Q1 and Q2 , and (b) 

the corresponding answers given by the Referee and the 

BN-based tool at that specific timepoint . 

The results from Experiment 1 show that the BN-based 

tool can help the security administrator to find the most 

l ikely compromised machine . As shown in Table 6, the 

BN-based tool gives a reasonably correct answer at time­

point AI5 when alert AE3 is reported . At this timepoint , 
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the BN-based tool tel ls  the l ikelihood of webServer being 

compromised is  89 .92% . At timepoint AI6 when alert 

AE5 is visible , the BN-based tool shows the l ikelihood of 

webServer being compromised is 92 .73 % .  Therefore , the 

BN-based tool are more confident about this conclusion . 

Moreover, the BN-based tool shows the l ikelihood of file 

server being compromised is  53 .04% at timepoint AI6 , 

a correct conclusion though a weak one . At timepoint 

AI7 , BN's answer is more useful . When a Trojan horse 

is detected , the BN-based tool is able to tell  which one is  

the real cause of the Trojan horse . As shown in Table 

6, the BN-based tool derives that the l ikelihood of the 

NFS shell attack being the real cause is 57.53% while 

the l ikelihood of the mountd attack being the real cause 

is 68 .93% which is much higher. Hence , the BN-based 

tool suggests that the mountd attack is the real cause , 

which is a correct conclusion . At timepoint AI8 when 

true alert AE9 is detected , the Referee can conclude that 

workStation has been compromised . It can be seen that 

the BN-based tool also gives the perfect answer (1 00% 

WS) .  Other probabil ity values remain the same as those at 

timepoint AI7 . 

The BN-based tool also detects the missed alert event . 

In this experiment , the BN-based tool can tell  that HIDS­

Alert is  a missed alert .  As shown in Table 6, the l ikelihood 

that HIDS-Alert is true is 85 .06% even though no alert 

is reported . Therefore , the BN-based tool can help the 

security administrator to infer that the HIDS-Alert is most 

l ikely missed . Nevertheless ,  we found that the BN-based 

tool gives a wrong answer at timepoint AI7 by saying that 

the l ikelihood of workStation being compromised is 60% , 

which is a weak false alarm . 

Results of the Other Experiments: The other experi­

ments are similar to Experiment 1 except for the following 

differences .  (a) Experiment 2 lets false alert FN 1 have 

substantial detection latency, i .e . ,  it is raised after Event 

1 8 .  The results show that the BN-based tool can generate 

useful conclusions in most timepoints . (b) Experiment 3 

lets the alert AE8 have detection latency and the results 

show that the BN-based tool performs consistently well in 

identifying delayed alerts . (c) Experiment 4 shows that the 

BN-based tool can leverage additional types of evidence 

beyond alerts and vulnerabil ity reports . The abil ity to use 

extra evidence in a handy way is a major advantage of the 

BN-based tool . In this experiment , the results show that 

correlation evidence such as AE5 and the event that file 

X is  executed on workStation increases the l ikelihood 

of workStation being compromised . (d) Experiment 5 

shows that the BN-based tool has strong capabil ity in miti­

gating the disturbance generated by false positives: the BN­

based tool can give a correct answer even in the presence 

of a false alert .  In this experiment, we first let the false 

alert ,  AE4 be raised , and true alert AE5 be raised later. The 
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TABLE 6. The results of EXDeriment 1 
QI, All AIZ AI. AI' 
Referee's Non, WEB WEB WEB; FS 

BN's 83.13% WEB 83.13% WEB 83.13% WEB 83.13% WEB 

85.06% lllDS..ALERT 85.06% lllDS..ALERT 85.06% lllDS..ALERT ·,u.14% FS 

BN-based tool says that the l ikelihood of fileServer being 

compromised is  74.8% , while the l ikelihood of NFS Shell 

attack being enforced is  6 1 . 1 9% ,  which is  much lower. 

As confirmed by the Referee , the fileServer is the correct 

answer. (e) Experiment 6 shows the perfect case . In this 

experiment , there are no false positives and false negatives , 

and only AE2 has insignificant latency. The results show 

that the BN-based tool performs extremely well in this 

case . 

4.4 Sensitivity Analysis 

In order to make the BN-based tool practical in real­

time security analysi s ,  one question must be answered: 

how sensitive is the BN-based tool to its CPT tables? Since 

the CPT tables are generated based on human expertise , 

they cannot be the absolute truth; instead , they are only 

approximate to the truth in the real world .  Therefore , the 

BN-based tool must be robust against reasonable (small )  

changes on its  CPT tables . In other words , the quality 

of the answer given by the BN-based tool should not be 

significantly affected by a slight changes on its CPT tables . 

The most desirable sensitivity analysis should be holistic ,  

i .e . ,  the combined effects of al l  related parameters should 

be considered in the analysi s .  However, such sensitivity 

analysis method is extremely difficult to develop . In our 

work , we analyze the sensitivity of the BN-based tool in an 

isolated way, i .e . ,  if there are multiple parameters related to 

the answers , we only consider the effect of one parameter 

at a time while keeping others constant . 

In our experiments , we have carried out extensive sensi­

tivity analysis experiments by using the sensitivity analysis 

tool , called SamIam [5] to check the sensitivity of the 

answers from the BN-based tool to its related parameters . 

When the BN-based tool generates an answer with some 

probability, we use SamIam to reversely check the effects 

of related CPT tables , i .e . ,  we change the probability 

associated with an answer by 5% , 1 0% and 1 5% and check 

the required changes on the related CPT tables . 

We find out that in all these experiments , the changes in 

CPT tables can only result in at most the same amount of 

change on the answers reported by the BN-based tool . For 

example,  in order to generate +5% change on the answer 

at time All (83 .l3%) ,  the minimum change required on 

parameters is  5% . The same holds for a -5% change . 

Therefore , the BN-based tool in our experiments is not 

sensitive to the CPT tables in the sense that changes in 
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AIS Alfi AI7 AIS 
WEB; FS WEB; FS WEB; FS; Trojan WEB; FS; Trojan; WS 

89.92% WEB 92.73% WEB 97.23% WEB; +100.OW8 

.. 1-3.10% FS 53.Q.:I.% FS; 51.39% WS 68.93% FS; 60% WS; 

38.47% Trojan 100% Trojan; 

57.53% NFS shell; 68.93% FS 

mountd 

CPT tables are not amplified on the answers given by the 

BN-based tool . 

5 Related work 

Bayesian network techniques have been applied to 

intrusion detection systems [4], [ 17], [25]. Our application 

of BN is at a different level . Our work makes use of 

the output of intrusion detectors and incorporates it into 

a holistic security analysis framework . Our BN model 

does not deal with low-level system events such as raw 

IP packets , system cal l s ,  etc., which have already been 

taken care of by various types of intrusion detectors . 

Frigault et al. [ 10], [ 1 1 ]  study how to use Bayesian 

Network and attack graphs to measure network security 

risk. Their work focuses on the pre-deployment planning 

phase in the sense that the security metrics produced by the 

BN reflect the inherent risk in a network . Our BN model 

address a wider range of security anlysis ,  most importantly 

the problem of real-time situation awareness which must 

account for various types of run-time observations l ike IDS 

alerts to answer the question of "what is really going on". 

Attack graphs have been widely studied in the context 

of enterprise security management , intrusion detection 

and response , and security metrics [ 1 2], [ 1 3] ,  [9], [ 14], 

[20], [2 1 ], [27]. Our work further extends the uti l ity of 

attack graphs by constructing a well-founded Bayesian 

network model that enables reasoning with uncertainty 

for situation-awareness security analysi s .  Dantu and Kolan 

also construct Bayesian networks based on attack graphs 

for risk management [6]. However, our Bayesian network 

model is fundamentally different from theirs . Dantu and 

Kolan use Bayesian networks to model the attacker's 

behaviors , whereas we use Bayesian networks to model 

uncertainties inherent in the causality relationships among 

system conditions in an attack graph as well as run-time 

observations . Our Bayesian networks model does not use 

any attacker profiles . 

Tang [24] applies Dempster-Shafter (DS) theory [7] 

in fault-diagnosis for overlay networks . The focus of our 

work is on analyzing cyber attacks which has very different 

characteristics than faults , due to the exitence of malicious 

players . 

6 Conclusions 

Graphical models are important tools for analyzing se­

curity events in enterprise networks . Although it may seem 
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straightforward to combine attack graphs and Bayesian 

networks , one should not simply juxtapose these two and 

think that they will work nicely together. By doing this ,  

either the real semantics and inference power of Bayesian 

networks are not fully uti l ized , or Bayesian networks 

are used in an inappropriate manner. As pointed out in 

previous sections , the key to using Bayesian networks 

correctly is to identify and represent relevant uncertainties . 

In this paper, we have built an example Bayesian 

network model to capture uncertain relationships , and 

experimental results show that using Bayesian networks 

may bring in new opportunities for improved enterpri se 

security analysi s .  To the best of our knowledge , our work 

is  the first effort that investigates systematic approaches to 

combining attack graphs and Bayesian networks . 
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