
A Theory of Cyber Attacks
A Step Towards Analyzing MTD Systems

Rui Zhuang Alexandru G. Bardas Scott A. DeLoach Xinming Ou
Kansas State University

Manhattan, KS USA
{zrui, bardasag, sdeloach, xou}@ksu.edu

ABSTRACT
Moving Target Defenses (MTD) have been touted as a game
changing approach to computer security that eliminates the
static nature of current computer systems – an attacker’s
biggest advantage. While promising, the dynamism of MTD
introduces challenges related to understanding and quanti-
fying the impact of MTD systems on security, users, and
attackers. To analyze this impact, both the concepts of
MTD systems and cyber attacks must be formalized. While
a theory of MTD systems was proposed in [18], this paper
presents a theory of cyber attacks that supports the un-
derstanding and analysis of the interaction between MTD
systems and the attacks they hope to thwart. The theory
defines key concepts that support precise discussion of at-
tacker knowledge, attack types, and attack instances. The
paper also presents concrete examples to show how these
definitions and concepts can be used in realistic scenarios.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access—
Management of computing and information system

Keywords
moving target defense; computer security; network security

General Terms
Science of Security

1. INTRODUCTION
Moving Target Defenses (MTD) have been touted as a

game changing approach to computer security that elimi-
nates the static nature of current computer systems [10].
While promising, the dynamism of MTD introduces chal-
lenges related to understanding and quantifying the impact
of MTD systems on security, users, and attackers. MTD can
be thought simply as constantly changing a computer sys-
tem to reduce or move the exploitable attack surface, which
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MTD’15, October 12 2015, Denver, CO, USA
Copyright is held by the owner/author(s).Publication rights licensed to ACM.
ACM 978-1-4503-3823-3/15/10 . . . $15.00.
http://dx.doi.org/10.1145/2808475.2808478.

MTD Systems
Theory

Cyber Attack
Theory

MTD Theory

Figure 1: MTD Theory Overview

are the resources available to attackers (e.g., software, ports,
component vulnerabilities, etc.) that can be used to com-
promise the system.

To date there is little research that shows how and why
MTD techniques may work effectively in real systems against
specific types of attacks. Part of this problem comes from
the fact that MTD systems pose new challenges in under-
standing and quantifying the effectiveness of such systems.
Part of what is needed is a comprehensive theory of MTD
that defines what an MTD system is, how it works, and how
it interacts with attacks and attackers to thwart those at-
tacks. While a theory of MTD systems was proposed in [18],
a theory of cyber attacks that supports the understanding
and analysis of the interaction between MTD systems and
attackers is still missing. In this paper, we propose a theory
of cyber attacks that provides the concepts and definitions
required to further study the effectiveness of MTD systems.

1.1 A Theoretical Framework Overview
Developing a science for cyber security has been acknowl-

edged as a critical need within the research community [14].
The goal of this work is to create a robust body of knowledge
related to cyber security based on theoretical and empirical
research that can support the development of truly secure
systems. Our work in moving target defense theory will not
only define a set of common terms and essential problems,
but it will also provide a systematic framework for analyzing
the potential effectiveness of MTD solutions.

Our approach to developing a complete MTD theory is
shown in Figure 1. The first step was to develop a theory
of MTD Systems [18] that focuses on the system itself and
how it adapts over time to achieve its security goals. The
second step, and the subject of this paper, was to develop
a theory of Cyber Attacks, which describes how an attacker
uses specific types of attacks to achieve its ultimate goals.
The final step will be to compose the two into an overall
MTD Theory to define how elements of the MTD Systems
and Cyber Attack theories interact. This is especially im-
portant in being able to understand the true effect of an
MTD system as its effectiveness only makes sense in light of
actions from an attacker for a specific type of attack.

1.2 MTD System Theory Background
MTD Systems Theory [18] defines MTD systems based

on the concept of a configurable system , which is defined in
terms of configuration parameters. Configuration parame-
ters are used to capture the notion of the configuration units
that a configurable system can control and is formalized as
a 〈name, value〉 pair. Each configurable system thus has a
configuration state, which is the aggregation of the current
values of all the configuration parameters associated with
the MTD system. An MTD system can also take actions,
called adaptations, that allow it to modify the values of its
configuration parameters and thus its configuration state.

MTD system theory builds on years of adaptive systems
research and captures the goals (both operational and secu-
rity) and policies of the system as essential elements. Goals
and policies ensure that the system can achieve its intended
purpose within stated constraints, and are used to deter-
mine valid configurations of an MTD system. Specifically,
adaptations are defined as a sequence of actions that change
the system from one starting configuration state to another
valid configuration state.

Using our basic MTD system definitions, we defined vari-
ous key concepts often used in cyber security circles. First,
we defined the configuration space as the set of valid states
in which an MTD system can exist. We also formally de-
fined the concepts of diversification and randomization and
showed how diversification increases the system configura-
tion space while randomization techniques adapt the system
configuration to increase the effectiveness of those systems.

We also formally defined three key research problems re-
lated to MTD systems. The MTD Problem was defined as
how to select the next configuration state of the MTD sys-
tem. Next, the Adaptation Selection Problem was defined
as how to select the adaptations to perform in order to get
to the next configuration state, while the Timing Problem
was defined as when to carry out the adaptations to actu-
ally change the state of the system. However, to solve these
problems, theories focused solely on an MTD system and its
properties are insufficient. For example, the best choice for
the next configuration state depends on a candidate state’s
impact on the attacker. In other words, does it invalidate an
attacker’s knowledge? Does it require the attacker to invest
additional effort or resources? Does it thwart specific types
of attacks that might compromise the system? Answering
these questions requires a way to formally talk about the
attacker as well as the target system.

2. CYBER ATTACK THEORY
Cyber attack success relies on information possessed by

an attacker when the attack is launched and is often mea-
sured by the information gained or modified as a result of
the attack. Thus, information must be an essential element
of any theory of cyber attacks. MTD Systems Theory in-
cluded the notion of a configuration parameter that captures
information about the configuration of a computer system,
or more generally a target device. This configuration infor-
mation is clearly part of the information of interest in an
attack. However, the information of interest to an attacker
goes beyond simple configuration information. For example,
a target system’s execution status and data are not configu-
ration information, but are critical to many types of attacks.
To capture all information of interest, we introduce a new

concept called an information parameter, where the system’s
configuration parameters is a subset of the system’s infor-
mation parameters.

Thus, a target device is described by a set of informa-
tion parameters and an attacker expends effort to gain or
modify a target device’s information parameters. Figure 2
highlights this relationship. In addition, an attacker gener-
ally has a lot of information that is not necessarily related to
the target, which consists of knowledge about other target
systems, specialized skills, or general purpose knowledge.

Attacker’s
knowledge

Target device and its
information parameters

Attacker’s
knowledge of target

Configuration parameter

Information parameter

Figure 2: Attacker and Target System Overview

In Cyber Attack Theory, we formally define attacks and
attacker’s knowledge in terms of information parameters.
By reasoning over the relationship between an MTD sys-
tem’s configuration parameters and an attack’s information
parameters, we can formally describe and analyze interac-
tions between attackers and MTD systems.

Next, we introduce a scenario to help motivate and explain
Cyber Attack Theory.

2.1 Motivating Scenario
We start with a simple military mission planning system,

which is shown in Figure 3. Authorized users can remotely
access the mission planner to construct military type mis-
sions. The Planner (a web server with a user interface) al-
lows users to carry out authorized actions, such as adding
new strategies, establishing plans/tactics or allocating re-
sources. To support these actions, the Planner accesses three
associated databases – the AssetDB, GeoDB and TargetDB.

Attacker Planner

TargetDB

GeoDB

AssetDB

Figure 3: Motivating Attack Scenario

In this scenario, attackers try to exploit a vulnerability
in the Planner. The vulnerability details are unimportant,
but we assume that if the vulnerability exists, the attacker
can exploit it. A second scenario, featuring a more concrete
code reuse attack and an address space layout randomization
(ASLR) MTD, is provided in Section 3.

2.2 Targets
We start our presentation of Cyber Attack Theory by

defining the concept of a target, which is based on the con-
cept of information parameters introduced above. We for-
mally define a target and a target system from the attacker’s

perspective and then build on them by defining concepts as-
sociated with attackers and cyber attacks.

When we talk about a target, we view it as a device or
system of devices that can be described by all kinds of infor-
mation, such as configuration parameters, execution state
and various other information types. Thus, we start by for-
mally defining an information parameter.

2.2.1 Information Parameter
We define an information parameter as a name value pair

with an associated type, which defines the domain of possible
values an information parameter can assume.

Definition 2.1. An information parameter, ψ = 〈n, v〉,
is a unit of information that can take on a value based on
its type, where n is the name and v is a value.

Definition 2.2. An information parameter type, Ψ, rep-
resents the domain of possible values that an information
parameter value can assume. We denote the domain of in-
formation parameter ψj as Ψj. An assignment of some value
z in Ψ to ψ is denoted as ψ.v ← z.

An information parameter is basically a variable to which
we can assign values from its domain. This is essentially
the same definition as that of a configuration parameter.
The difference is that a configuration parameter captures
information only about the configuration of a device, types
of software on that device, specific software settings, etc.
Note also that a device’s the configuration parameters are a
subset of its information parameters.

In order to aggregate all the information parameters of a
device or system, we define the notion of a composite infor-
mation parameter.

Definition 2.3. A composite information parameter, ψ,
is an information parameter that is composed of a set of sub
information parameters, ψ = 〈n, {ψ1, ψ2, . . . , ψn}〉, where n
is the name, and ψ1, ψ2, . . . , ψn are sub information param-
eters. The domain of a composite information parameter,
ψ, is derived from the sub information parameter domains,
Ψ = Ψ1 ×Ψ2 × . . .×Ψn.

For example, the Planner in Figure 3 has a set of informa-
tion parameters that might include ψ1 = 〈pageviews, 15/d〉,
ψ2 = 〈visitors, 250〉, ψ3 = 〈memory, 8GB〉, ψ4 = 〈cpu,
intel i5〉, ψ5 = 〈eax, 0x65442224〉, ψ6 = 〈os, Ubuntu 14.04〉,
and ψ7 = 〈ip, 222.20.22.22〉. Here, ψ1 and ψ2 are informa-
tion parameters but not configuration parameters because
they are statistically determined by visitors. ψ5 is an in-
formation parameter but not a configuration parameter be-
cause the content of EAX reflects the execution status of
a program. The remaining information parameters are also
configuration parameters.

2.2.2 Target
Targets are generally thought of as devices on a computer

network that an attacker may compromise, modify or gain
information from. However, we also include humans as po-
tential targets because users such as administrators, devel-
opers, and clients are also prime targets of attackers.

Definition 2.4. A target, d, is any device an attacker
may try to obtain information from, break into, alter or de-
stroy. In cyber space, the targets are computer network de-
vices and communication channels, such as machines (either
physical or virtual), humans, routers, switches, cellphones,
cables, optical fiber, etc.

In our example system, the Planner, AssetDB, GeoDB,
TargetDB and all users of the mission planning system are
potential targets for an attacker. To link the information
parameters to the target they represent, we define the pred-
icate describes.

Definition 2.5. If an information parameter, ψ, repre-
sents some aspects of the configuration, data or execution
state of a device, d, we say ψ describes d, which we denote
as the predicate describes(ψ, d).

In the mission planning example ψ1 through ψ7 can all be
used to describe the Planner. If we have a composite infor-
mation parameter that captures all the relevant information
that describes a specific device, we say that composite in-
formation parameter is complete as defined below.

Definition 2.6. Each device d has a unique complete in-
formation parameter ψd whose value captures all the infor-
mation that describes d and only information that describes
d. Formally, this is stated as

∀d,∃ψd, describes(ψd, d) ∧ (∀ψ,ψ ∈ ψd ⇒
describes(ψ, d)) ∧ (¬∃ψ,ψ /∈ ψd ∧ describes(ψ, d))

It should be noted that complete information parameters
refer to the information parameters defined for that device.
Obviously, the set of information parameters for a device
could be very large, of which only a subset are of practical
use as we will see later.

Using the notion of a complete information parameter, we
define the state of a particular target device or system as the
current values associated with each information parameter
in the device’s complete information parameter.

Definition 2.7. The state, sd, of target d, is current
value of the complete information parameter of d, ψd. We
can also refer to the state of d at time t.

Obviously, the state of a target captures the value of ψd
at a given point in time. This fact will become important
when we discuss the effect of attacks in Section 2.4.

2.2.3 Target System
Now that we have defined a target, a target system simply

becomes the composition of a set of targets. This essentially
allows us to capture the large, complex computer systems
that are the target of many attackers today.

Definition 2.8. A target system, D, consists of a set of
targets, D = {d1, d2, . . . , dk}.

Definition 2.9. Each target system, D, has a system in-
formation parameter, ψD, which is the set of each target
device’s complete information parameter, which is defined
as ψD = {ψdi |di ∈ D} and assumes each target’s complete
information parameter name is unique.

Combining the Definitions 2.9 and 2.5 allows us to define
describes for a target system as describes(ψD, D) ⇔ ∀ d ∈
D, describes(ψd, d).

The mission planning system (MP) can be viewed as the
target D = {dPlanner, dAssetDB , dTargetDB , dGeoDB} with a
system information parameter ψMP where describes(ψMP ,
MP) is true. In addition, since each target device has a
complete information parameter ψdi , each device also has
a complete information parameter such as ψPlanner where
describes(ψPlanner, Planner). Like the information param-
eter, the state of the target system is simply a combination
of each target device’s state.

Definition 2.10. The target system state SD of target
system D is the current value of the system information pa-
rameter ψD. We also refer to the state of D at time t.

At this point, we have defined key concepts related to
targets and target systems, which in some ways overlaps
the definitions in MTD Systems Theory. (MTD systems
are also target systems, etc.) However, it is important to
note that targets are defined from the attacker’s perspective,
which captures the fact that the attacker may not know the
policies and constraints associated with the system. These
details are often the objective of preliminary attacks on the
system. As we define attackers and attacks, we show how
this information can be gained via attacks.

2.3 Attackers
To begin to understand attacks, including how and why

they are launched, we must start with the attacker. While
an attacker is usually interpreted as an individual person,
we extend that notion slightly.

Definition 2.11. An attacker, x, represents a single in-
truder or team of intruders, where an intruder can be either
a human or an automated program.

Thus, an attacker is not limited to an individual person.
Attackers may be groups of people where each is responsible
for a part of a coordinated attack. Attacker may also be
software programs that automate the intrusion process.

As discussed above, for an intrusion to be successful, an
attacker must make an effort to investigate the target, which
leads to the attacker possessing additional or updated knowl-
edge about the target. We also represent this knowledge as
information parameters.

Definition 2.12. A knowledge unit is an information
parameter possessed by an attacker. We say attacker x pos-
sesses knowledge ψx, which includes all the attacker’s knowl-
edge units x. If ψ1, ψ2 . . . ψn are the knowledge units x pos-
sesses, then ψx = {ψ1, ψ2 . . . ψn}. Note: attacker’s knowl-
edge may not be true; it only represents what the attacker
believes to be true.

Here, we see ψx represents all the knowledge an attacker
can use to attack a target. If the attacker’s knowledge is not
sufficient to attack a specific target to achieve the attacker’s
objective, the attacker will be forced to perform preliminary
attacks to gain that knowledge. To specifically talk about
an attacker’s knowledge about a given target, d, or target
system, D, we define ψxd and ψxD.

Definition 2.13. Attacker x has knowledge, ψxd , about
target d, where ψxd = {ψ | ψ ∈ ψx ∧ ψ n

∈ ψd}. Similarly,
attacker x’s knowledge about target system D is represented
as ψxD, where

ψxD = {ψ | ψ ∈ ψx ∧ ψ n
∈ ψD} = ⋃

d∈D
ψxd .

The operator n
∈ is used to capture the fact that an at-

tacker’s knowledge ψxd and ψxD includes the information pa-
rameters that have the same name as those in the target’s
complete information parameter, although their values as-
sociated may be different. Formally, we recursively define n

∈

as

ψ n
∈ ψ′ ⇔ ∃ ψi ∈ ψ′.v s.t. (ψ.n = ψi.n ∨ ψ

n
∈ ψi).

Capturing attacker knowledge supports reasoning about
what an attacker knows, what information is gained during

an attack, etc. This reasoning will be the key to understand-
ing the affect of MTD adaptation on an attacker’s attempt to
penetrate or compromise specific targets since MTD adap-
tation works by invalidating attackers’ knowledge of their
targets. To know when an attacker’s knowledge of a target
is valid, we define the predicate holds.

Definition 2.14. If during a time period, [t1, t2], a log-
ical statement, l, defined over ψx and ψD is true, we say
holds(l, [t1, t2]). If t1 = t2 = t, it simplifies as holds(l, t).

For example, an attacker might have the following knowl-
edge about the Planner: 〈memory, 8GB〉, 〈cpu, intel i5〉,
〈os,Windows 8.1〉, and 〈ip, 222.20.22.22〉. However, as de-
fined in Section 2.2.1, the true value of the operating system
for the Planner is 〈os, Ubuntu 14.04〉 and thus the attacker’s
knowledge does not hold. Obviously, any attacks against the
Planner that assumes a Windows OS will fail.

2.4 Attacks
Now that we have defined the concepts of attackers and

targets, we turn to defining the attacks themselves. Attacks
are a key aspect of our theory as they define the effect of
an attacker’s interaction with the target system. We de-
fine attacks in terms of their affect on system information
parameters or attacker knowledge. To help us capture the
modification of information, we start by defining an assign-
ment of values between two information parameters.

Definition 2.15. An assignment o is a tuple of infor-
mation parameters 〈ψ1, ψ2〉, that when executed, copies the
value of ψ2 into ψ1, which is denoted as ψ1.v ← ψ2.v. For-
mally, we define the execute operation as execute(o) ⇔
o.ψ1.v ← o.ψ2.v.

Essentially, the execution of an assignment affects only the
value associated with the first information parameter. The
information parameters themselves do not need to have the
same name, even though it is often used to denote the copy-
ing of information from a target to an attacker’s knowledge
or vice versa. From the atttacker’s perspective, when an
assignment o = 〈ψ1, ψ2〉, where ψ2 is a target system infor-
mation parameter and ψ1 belongs to attacker’s knowledge,
it is called a gain assignment. In contrast, when ψ2 belongs
to an attacker’s knowledge and ψ1 is a target system infor-
mation parameter, it is called a modify assignment, which
implies that the attacker has successfully modified the target
system, and the attacker’s knowledge of the target system
is updated accordingly.

For example, a successful intrusion that obtains the IP
address of the Planner can be captured by an assignment
〈ψxPlanner.ip, ψPlanner.ip〉, which sets the Planner’s IP ad-
dress to the address the attacker’s has in its IP address infor-
mation parameter for the Planner. 1 We can also define an
intrusion that modifies the system time of the Planner via
two assignments 〈ψPlanner.time, ψxt 〉, and 〈ψxPlanner.time,
ψx.t〉, where the first assignment sets the Planner’s system
time to ψx.t (some time the attacker wants to set the system
time to) while the second assignment updates the attacker’s
own knowledge of the Planner’s system time.

1Here we use the ‘.’ notation to refer to the ip information
parameter in the attackers knowledge about the Planner.

Table 1: Attack Type Specification
Type Ωpre Ωpost

φ1 ψd1 .ip 6= ψxd1 .ip 〈ψxd1 .ip, ψd1 .ip〉
φ2 ψxd1 .ip = ψd1 .ip ∧ ψxd1 .port 6= ψd1 .port 〈ψxd1 .port, ψd1 .port〉
φ3 ψxd1 .ip = ψd1 .ip ∧ ψxd1 .port = ψd1 .port ∧ ψxd1 .os 6= ψd1 .os 〈ψxd1 .os, ψd1 .os〉
φ4 ψxd1 .ip = ψd1 .ip ∧ ψxd1 .port = ψd1 .port ∧ ψxd1 .os = ψd1 .os ∧ ψxd1 .vul 6= ψd1 .vul 〈ψxd1 .vul, ψd1 .vul〉
φ5 ψxd1 .ip = ψd1 .ip ∧ ψxd1 .port = ψd1 .port ∧ ψxd1 .os = ψd1 .os ∧ ψxd1 .vul = ψd1 .vul 〈ψd1 .exa, ψx.exa〉, 〈ψxd1 .exa, ψ

x.exa〉
φ6 ψxd1 .ip = ψd1 .ip ∧ ψxd1 .port = ψd1 .port ∧ ψxd1 .exa = ψd1 .exa ∧ ψxd1 .root 6= ψd1 .root 〈ψxd1 .root, ψd1 .root〉

2.4.1 Attack Types
Next, we use assignments to define the post-conditions

of attacks, which are defined over ψD and ψx. We start
by defining an attack type, which is a template for actual
attack instances, which we define later.

Definition 2.16. An attack type, φ, is a tuple 〈Ωpre,
Ωpost〉 where Ωpre is a logical statement defined over the tar-
get system’s information parameter ψD and the attacker’s
knowledge ψx, and Ωpost is a set of assignments over ψD
and ψx.

To simplify our discussion, we assume that the logical
statements are valid and that the names of the information
parameters in ψx and ψD are unique.

In the mission planning system example, assume attacker
x has the goal to exploit the Planner to obtain root privi-
leges. To achieve this objective, x considers a sequence of
attack types, φ = {φ1, φ2, . . . , φ6}, where the effects of the
attacks are as follows:

• φ1 - gain the IP address of the Planner
• φ2 - gain the port number of a specific app
• φ3 - gain the operating system type
• φ4 - obtain an exploitable vulnerability of the app
• φ5 - deploy an exploit agent on the Planner
• φ6 - connect to the agent (e.g., via reverse shell) and

gain the root privilege

Table 1 shows the specification of these attack types. Each
attack type’s precondition is a logic statement that explicitly
reflects the relationship between an attacker’s knowledge of
the target and the target’s true information. Also, notice
that each attack type’s precondition depends on the previ-
ous attack type’s post-condition. For example, φ3 requires
that the attacker’s knowledge about the target’s IP address
and the port number is correct. This means the attacker
must have a way to gain prior knowledge before the actual
attack, which is done via the post-conditions of φ1 and φ2.
Also note that the post-condition of φ5 can be viewed as a
modify assignment while φ1, φ2, φ3, φ4 and φ6 are all gain
assignments.

This approach not only allows us to explicitly define an
attack type based on the relationship between an attacker’s
knowledge and target system, but it also provides insight
into the key information parameters associated with specific
attacks and targets. This relationship will be instrumental
when we tie Attack Theory to existing MTD System Theory
in order to analyze which configuration parameters can be
modified to thwart different types of attacks and to formally
define the attack surface for specific types of attacks.

We also note that a precondition’s logical statement only
captures necessary information-based conditions for an at-
tack to succeed. It does not include all the sufficient condi-
tions. We discuss this in more details in Section 2.4.2.

While the attack specifications in Table 1 provide a precise
description of individual attacks, attackers generally com-
bine a sequence of low-level attacks to achieve some higher-
level objective. To capture this reality, we need to provide
the ability to analyze the composition of a set of low-level
attack types. However, before defining attack type compo-
sition, we define three helper functions: transform, union
replace, and substitution.

Definition 2.17. We define two transform functions, ξx
and ξd, that compute a set of information parameters from
the assignments in Ωpost. ξx() extracts information param-
eters belonging to ψx while ξd() extracts information param-
eters that describe target d as defined below.

ξx(φ.Ωpost) = {〈n, v〉|〈ψ1, ψ2〉 ∈ φ.Ωpost ∧ ψ1 ∈ ψx∧
n = ψ1.n ∧ v = ψ2.v}

ξd(φ.Ωpost) = {〈n, v〉|〈ψ1, ψ2〉 ∈ φ.Ωpost ∧ ψ1 ∈ ψD∧
n = ψ1.n ∧ v = ψ2.v}

The purpose of the transform function is to extract infor-
mation parameters contained in Ωpost. For example, if we
take Ωpost from φ1, ξx(φ1.Ωpost) = {〈ip, ψd1 .ip.v〉}, and
ξd(φ1.Ωpost) = ∅. Similarly, for φ5, ξx(φ5.Ωpost) = {〈Exa,
ψx.Exa.v〉}, and ξd(φ5.Ωpost) = {〈Exa, ψx.Exa.v〉}. To de-
fine the union replace function, we first define an operator
to determine that an information parameter name does not
exist in a set of information parameters or assignments. If
ψ̂ is a set of information parameters, then we recursively
define the operator

n
/∈ as

ψ
n
/∈ ψ̂ ⇔ @ ψi ∈ ψ̂, s.t. (ψ.n = ψi.n ∨ ψ

n
∈ ψi.v).

And when ô is a set of assignments,
n
/∈ becomes

o
n
/∈ ô ⇔ @ oi ∈ ô, s.t. (oi.ψ1.n = o.ψ1.n ∨ o.ψ1

n
∈ oi.ψ1.v).

Using the
n
/∈ operator, we now define the union replace

function, which updates one set of information parameters
based on a second set of information parameters. Essen-
tially, the union replace function replaces the information
parameter values in the first set with those of the second set
if the names match. Additionally, if information parameters
exist in the second set but not the first, these new informa-
tion parameters from the second set are added to the first
set. We also overloaded the union replace operator to work
on two sets of assignments as well.

Definition 2.18. To update one set of information pa-
rameters ψ̂1 based on a second set ψ̂2, we define a union re-
place function, ψ̂1] ψ̂2 = {ψ|(ψ ∈ ψ̂1 ∧ ψ n

/∈ ψ̂2) ∨ ψ ∈ ψ̂2}.
Likewise, union replace over assignments is defined as ô1]ô2

= {o|(o ∈ ô1 ∧ o n
/∈ ô2) ∨ o ∈ ô2}

Next, we define a substitution function σ that substitutes
the values from a set of information parameters into a log-
ical statement. We use σ to substitute the information pa-
rameters values from an attacker’s knowledge into the cor-
responding information parameter in the precondition of a
given attack type, φ.

Definition 2.19. Given a logical statement l and a set of
information parameters ψ̂ we define the substitution func-
tion σ(l, ψ̂) as a mapping from names in l to values of in-

formation parameters in ψ̂ such that the name in l matches
the name of the information parameter in ψ̂.

In general, we use the σ function to substitute the values
of information parameters in the attacker’s knowledge to
variable names in Ωpre. This mapping allows us to evaluate
the precondition Ωpre.

Using these helper functions, we now formally define a
composite attack type. Intuitively, a composite attack type
is a sequence of sub attack types. The preconditions of the
composite attack type is the conjunction of all the precondi-
tions from the sub attack types that are not satisfied by pre-
vious sub attacks. Likewise, the post-condition is the union
of the sub attack post- conditions where an assignment to
an information parameter later in the sequence takes prece-
dence over assignments to the same information parameter
earlier in the sequence.

Definition 2.20. A composite attack type, φ, is a se-
quence of attack types, φ = [φ1, φ2, . . . , φn], where each sub
attack type’s pre and post-conditions (φi.Ωpre and φi.Ωpost)
are defined over a target system’s complete information pa-
rameter ψD(i) and the attacker’s knowledge ψx(i). The com-
posite attack type’s pre and post-conditions are defined as

φ.Ωpre = ∧
1≤i≤n

σ(φi.Ωpre, ψ
x(i−1))

φ.Ωpost =]
1≤i≤n

φi.Ωpost

where : ψD(0) = {}, ψx(0) = {}
ψx(i) = ψx(i−1)] ξx(φi.Ωpost)
ψD(i) = ψD(i−1)] ξx(φi.Ωpost)

Note, we use a sequence above to reflect the relationship
that the subsequent attack types depend on previous attack
types. While not specifically defined, there is nothing in our
theory to limit the analysis of parallel attacks. For com-
pleteness, we define an atomic attack type as an attack type
that cannot be further decomposed into sub attack types.
To demonstrate how pre and post-conditions for composite
attack types are computed, we show how are φ1 and φ2 are
composed into attack type φ in Figure 4.

Generally speaking, an attack type acts as a template for
an actual attack. This relationship is similar to that of an
object-oriented class and an object or instance of that class.
One attack type can be implemented by many different at-
tacks. For example, attack type φ1 attempts to gain the IP
address of the Planner. To implement φ1, an attacker might
use automated IP scanning tools, guess the IP address, or
obtain it through social engineering. Although these are
different attacks, they all implement a same attack type.

2.4.2 Attack Instances
Definition 2.21. An attack is a process performed by at-

tacker x against target d implementing attack type φ during
time period [ts, tf]. We denote this attack as

∮ tf
ts

(x, d, φ).
Each attack, has a success likelihood against static systems
of Pstatic and a duration of Ta = tf − ts.

As indicated in [3, 18], quantifying the effectiveness of
MTD systems is still an open issue, however, the develop-
ment of an attack theory will greatly benefit our understand-
ing of the interaction between the attacker and MTD sys-
tem. This will include an understanding of the cost factors

Initialization:
ψx(0){}, ψD(0) = {},Ωpre = {},Ωpost = {}

compose φ1 :

ψx(1) = ψx(0)] ξx(φ1.Ωpost)
= {}] {〈ip, ψd1 .ip〉}
= {〈ip, ψd1 .ip〉}

ψD(1) = ψD(0)] ξD(φ1.Ωpost)
= {}] {}
= {}

Ωpre = σ(φ1.Ωpre, ψ
x(0))

= σ(φ1.Ωpre, {})
= ψd1 .ip 6= ψxd1 .ip

Ωpost = {}] φ1.Ωpost
= {〈ψxd1 .ip, ψd1 .ip〉}

compose φ2 :

ψx(2) = ψx(1)] ξx(φ2.Ωpost)
= {〈ip, ψd1 .ip〉}] {〈port, ψd1 .port〉})
= {〈ip, ψd1 .ip〉, 〈port, ψd1 .port〉}

ψD(2) = ψD(1)] ξD(φ2.Ωpost)
= {}] {}
= {}

Ωpre = σ(φ2.Ωpre, ψ
x(1)) ∧ Ωpre

= σ((ψxd1 .ip = ψd1 .ip ∧ ψ
x
d1
.port 6= ψd1 .port),

{〈ip, ψd1 .ip〉}) ∧ Ωpre
= ψxd1 .port 6= ψd1 .port ∧ ψd1 .ip 6= ψxd1 .ip

Ωpost = Ωpost] φ2.Ωpost
= {〈ψxd1 .ip, ψd1 .ip〉, 〈ψ

x
d1
.port, ψd1 .port〉}

Figure 4: Composition of attack types φ1 and φ2 into
attack type φ.

related to the attacker and MTD actions, which we believe
are closely tied to the duration of the attacks and the im-
pact on the attacker’s intrusion success likelihood. Other
cost factors, such as attacker effort, are directly related to
the time and intrusion success likelihood.

However, explicitly including Ta and Pstatic in the defi-
nition of the attack does not necessarily mean that we will
assign specific values to them. Coming up with real numbers
for these factors is hard [1], although there has been work
trying to estimate the mean time-to-compromise [8] and
to measure Pstatic [4]. Quantifying Ta and Pstatic is out of
the scope of our work. However, we do believe that Ta and
Pstatic can be impacted by MTD designers by manipulating
MTD system parameters such as the diversification of the
configuration space and the adaptation interval. One of our
future goals is the development of an analytical model that
can inform designers as to how particular parameter settings
will impact the effectiveness given attack parameters such as
Ta and Pstatic. Conversely, MTD designers will also be able
to judge how effective a given MTD system will be based on
various values of Ta and Pstatic.

Definition 2.22. An atomic attack is an attack that im-
plements an atomic attack type and cannot be decomposed
into sub attacks. An atomic attack

∮ tf
ts

(x, d, φ) is success-
ful with probability Pstatic if and only if its precondition
Ωpre is true from ts to tf . If successful

∮ tf
ts

(x, d, φ) ensures

execute(Ωpost) is true precisely at tf .

If Pstatic is true, that indicates that all the sufficient con-
ditions for the attack to be successful in a static system,
with the exception of those specified in Ωpre are true. How-
ever, Ωpre captures those necessary conditions that can be
impacted by the MTD system. As long as Ωpre remains true

from ts to tf and Pstatic is true, the attack will be successful
and the attack’s post-conditions will be executed at tf .

Like attack types, attacks themselves are generally com-
posed of a sequence of smaller attacks to achieve a larger
purpose. We now formally define a composite attack.

Definition 2.23. An composite attack is an attack that
implements a composite attack type. Given composite at-
tack type φ that is composed of a sequence of attack types
[φ1, φ2, . . . , φn], a composite attack

∮ tf
ts

(x, d, φ) that imple-

ments φ is composed of a sequence of attacks where each
attack

∮ ti
ti−1

(x, d, φi) implements φi and t0 = ts ∧ tn = tf .

Formally, this is captured as:∮ tf

ts

(x, d, φ) =

[

∮ t1

ts

(x, d, φ1),

∮ t2

t1

(x, d, φ2), . . . ,

∮ tf

tn−1

(x, d, φn)]

Thus, a composite attack is simply implemented by a se-
quence of attacks where each attack implements a corre-
sponding sub attack type. Using the attacks defined in Ta-
ble 1, an attack

∮ tf
ts

(x, d1, φ) that implements the composite

attack type φ = [φ1, φ2] requires the composition of two sub

attacks
∮ t1
ts

(x, d1, φ1) that implements φ1 and
∮ tf
t1

(x, d1, φ2)

that implements φ2.

2.5 Exploration Space
So far, we have introduced two properties of attacks, be-

side the attack type definition itself, that are critical to an-
alyzing attacks, the attack interval Ta and the static likeli-
hood of success Pstatic. Next, we introduce a third concept
that is important to the analysis of attacks and their in-
teractions with MTD systems called the exploration space.
Essentially, the exploration space captures the set of possible
values an attacker must search in order to find the correct
value of a specific information parameter or parameters in
order to carry out specific attacks.

Figure 5 shows an overview of the relationships between
an information parameter, ψ’s, exploration space, its con-
figuration space (as discussed in Section 1.2), and the at-
tacker’s effort to ascertain ψ’s actual value. 2 The effort
spent on gaining knowledge through preliminary attacks can
be viewed as actions that reduce the attacker’s uncertainty
about ψ’s value from the exploration space down to a single
value. For a static system, this uncertainty can be safely
assumed to monotonically decreasing with each additional
attack. However, with MTD systems, this assumption is
invalid. Instead, MTD systems make the attacker’s uncer-
tainty non-monotonic.

An exhaustive search of the entire exploration space Ψ
to identify the correct value of ψ is not the preferred ap-
proach. However, there are times when an exhaustive ap-
proach are applicable. For example, in the mission planning
example, an attack implementing φ1 may scan all possible
IP addresses in an IPv4 subnet to obtain the correct IP
address of the Planner. However, attackers can also use a
priori knowledge to reduce the search space as well. For
example, while knowing that port numbers must be in the
range of 0-65535 is of some use in searching ψPlanner for

2If the information parameter in question is a target’s com-
plete information parameter or any other set of informa-
tion parameters the values are simply tuples of values cor-
responding to the information parameters in the set.

the website port number, knowledge that public facing web-
sites usually use port number 80 may immediately reveal the
correct value of ψPlanner.port. An attacker can use social
engineering to gain required knowledge. For example, an ad-
ministrator might be fooled into leaking important system
information such as IP addresses, operating systems, pass-
words, etc. No matter which approach is leveraged by at-
tackers, gaining knowledge definitely requires effort on their
part to reduce the size of the exploration space.

Attacker Effort

Exploration space Configuration space

Figure 5: Exploration Space Overview (dots are pos-
sible values of the information parameter)

If an information parameter ψ is a configuration parame-
ter of the MTD system as well, the exploration space of ψ
may actually be larger than configuration space of ψ. Al-
though a configuration parameter’s valid values are typically
limited based on system constraints and policies, attackers
usually have no way of knowing what these constraints are.
For example, constraints internal to the system may require
ψAssetDB .port to be either 43, 53, or 63. However, since
attackers would not typically know this information, they
would likely be forced to scan the entire range from 0 to
65535. Thus, in general, the exploration space of informa-
tion parameter ψ equals its domain ψ.

Definition 2.24. Given information parameter ψ with
domain Ψ, the exploration space of ψ is

ESpaψ = Ψ

and the size of the exploration space is |Ψ|.
Generally speaking, the exploration space is the maximum

set of potential values attackers need to investigate in order
to obtain the correct value. This concept itself is objective
and comes with no specific assumptions about an attacker’s
capability, skill level, or knowledge about the related target
system.

Similarly, the exploration space of a target system, D, is
simply the domain of ΨD, which is the cross product of all
ψD’s sub information parameter domains.

Definition 2.25. Given a target system D, with its com-
plete information parameter ψD with domain of ΨD, the ex-
ploration space of D is defined as:

ESpaD = ΨD

Similarly, the size of this exploration space is |ΨD|.
Although theoretically, this definition gives us an intuition

about the exploration space of a target system, it provides
little insight to help us understand the exploration space for
each individual attack. To do that, we need to define the ex-
ploration space of both atomic and composed attack types.
To facilitate these definitions, we first define a function to
extract the information parameters in an attack type whose
value must be gained by an attacker.

Definition 2.26. Given atomic attack type φ = 〈ΩPre,
ΩPost〉, the function δ extracts all information parameters
from ΩPost whose value the attacker must gain. Formally,
this is defined as

δ(ΩPost) =

{ψ|∀o ∈ ΩPost, o.ψ1 ∈ ψx ∧ o.ψ2 ∈ ψD ∧ ψ ← o.ψ1}

Based on this function, we define the exploration space of
an attack type.

Definition 2.27. The exploration space of attack type
φ = 〈ΩPre, ΩPost〉 is the cross product of the domain of
each information parameter ψ ∈ δ(φ.ΩPost).

ESpaφ =
∏

ψ∈δ(φ.ΩPost)

Ψ

The size of this exploration space is
∏
ψ∈δ(φ.ΩPost) |Ψ|.

This definition requires that for an atomic attack type φ,
if there are multiple information parameters in δ(φ.ΩPost),
attacks implementing φ must attempt to gain the value of
each of those information parameter simultaneously. Thus,
the exploration space is the cross product of its information
parameter domains. However, atomic attack types tend to
be very simple and usually only attempt to gain the value
of a single information parameter.

Because a composite attack is made of a set of sub attacks,
one might think that the exploration space of the composite
attack would not be as large as the cross product of all the
information parameters for which it attempts to gain a value.
However, this is untrue. Although the exploration space
shrinks as sub attacks are successfully completed, as shown
in Figure 5 as attacker effort, the overall exploration space
remains the same.

Actually, the concept of sub attacks clearly demonstrates
the argument that an attacker’s effort is actually linear [1]
instead of exponential as would be suggested by the cross
product operation. Instead of finding all information param-
eter values simultaneously, a composite attack breaks that
down into a series of steps, whose effort is generally small.
Thus, if no changes occur to the system configuration, each
atomic attack type can be viewed as an attempt to break
into a single layer of defense. And, because the effort re-
quired to break into each layer is relatively low, once a layer
is penetrated, the next layer is exposed and the attacker has
almost unlimited time to attack it. Bellovin [1] claims that
what is really needed for system security is an approach that
makes the effort expended by the attacker exponential as op-
posed to linear. Clearly, by constantly adapting the values
of the appropriate information parameters, MTD systems
could eliminate that brittleness. Attackers can no longer as-
sume that they can ascertain the value of each information
parameter one at a time, but will effectively need to learn,
and potentially relearn them all in a very short time frame,
which pushes the attackers effort towards the exponential.

3. ASLR ATTACK EXAMPLE
This section describes an attack that defeats the PaX Ad-

dress Space Layout Randomization (ASLR) [16]. Specifi-
cally, we use the return-to-libc attack presented in [13] to
demonstrate how cyber attack theory can be used to ana-
lyze a concrete attack. ASLR is a security technique that

guards against code reuse attacks, which work by overwrit-
ing memory locations to point to potentially malicious code.
By randomizing memory locations, ASLR makes it difficult
to correctly guess the memory locations of specific processes.
More specifically, a process’s address space contains three
areas: the executable area, the mapped area and the stack
area. Instead of fixing each area’s base address, ASLR ran-
domizes it by adding an extra variable to the base address
when the process is created. For the Intel x86 architecture,
PaX ASLR randomizes 16 or 24 bits for these areas. For
instance, the mapped data area variable delta mmap has 16
bits randomness, which means the attacker only needs to
iterate from 0 to 65535 to determine its value.

We briefly review a concrete implementation of return-
to-libc attack [13] before demonstrating the application of
cyber attack theory to this example. The return-to-libc at-
tack takes advantage of two aspects of PaX ASLR. First,
PaX ASLR randomizes only the base addresses of the three
memory areas but not the layout within each area. Second,
the layout is fixed throughout a process and all its children’s
lifetime. The implementation of the return-to-libc attack
first creates a memory hole in the Oracle 9 PL/SQL Apache
module by creating an overflow buffer in the ap getline()
function in http protocol.c. To conduct the attack, the base
of the mapped area mmap base and the offset of the usleep()
function usleep offset in libc are precomputed. (libc is the
standard C-language library that is loaded into all Unix pro-
grams.). Then the value of delta mmap is found by repeat-
edly overflowing the stack buffer with guesses for the abso-
lute address of the usleep() function. An unsuccessful guess
causes the child process to crash and be replaced by a new
process with the same randomization offsets. A successful
guess calls the usleep() function and hangs the connection for
16 seconds, which helps determine the value of delta mmap.
Once the value of delta mmap is gained, the absolute loca-
tions of all functions in libc can be calculated. The final
step is to smash the stack to point to another libc function,
system(), which executes user supplied commands through
command shell. Shell commands are sent to system() as an
argument.

3.1 Applying Cyber Attack Theory
This section demonstrates how the ASLR attack can be

formally described by our cyber attack theory.
Target System. For our purposes we assume the mission

planning system is the target system D, with its complete
information parameter ψMissionPlanning, and the Planner
dPlanner (or dP for short) is the specific target of inter-
est, which has its complete information parameter ψPlanner.
The information parameters of interests involved in this ex-
ample are ψdP .ip, ψdP .apache port, ψdP .os, ψdP .mmap base,
ψdP .usleep offset, ψdP .system offset, and ψdP .delta mmap.

Attacker. To carry out this attack successfully, the at-
tacker x must have correct knowledge of the Planner, ψxdP ,
including the Planner’s IP address, Apache web server port
number, operating system, the usleep() and system() func-
tion offsets, and the values for mmap base and delta mmap.
Formally, these are captured via attacker knowledge in the
form of information parameters such as ψxdP .ip. In addition,
the attacker should have general knowledge in ψx that cap-
tures special skills such as how to use mmap() under linux
to obtain mapped area base locations, how to use objdump
to gain the offsets of usleep() and system() functions, and

how iterate over all potential delta mmap values and judge
which one is correct, etc.

Attack Type. To simplify our discussions, we assume
the attacker has knowledge about the Planner’s IP address,
Apache port number and operating system via preliminary
attacks. Formally stated using the IP address as an example,
in a static system holds(ψxdP .ip = ψdP .ip, [ts, tf]) is assumed
to be true. Thus, the return-to-libc attack is a concrete
implementation of attack type φ4 in the mission planning
scenario. Actually, φ4 can be decomposed into three sub
attack types as shown in Table 2. Note that, in φ4’s sub
attack type preconditions, ψxdP .ip = ψdP .ip ∧ ψ

x
dP
.apache port

= ψdP .apache port ∧ ψ
x
dP
.os = ψdP .os has been removed due

to our assumption of attacker foreknowledge. The return-to-
libc attack can also be viewed as a concrete implementation
of φ5, but we ommit that discussion due to space limitations.

Attack Instance. As discussed above, the return-to-
libc attack implements the attack type φ4. Based on φ4’s
decomposition, it also precisely captures the knowledge that
an attacker x must gain from the target system.

Analysis. Formalizing attacks using cyber attack the-
ory explicitly reveals that many information parameters in
the return-to-libc attack remain static and only delta mmap
changes. Additionally, delta mmap only has 16 bit random-
ness, which means its diversity (the size of its configura-
tion/exploration space) is only 216 = 65, 536. The combi-
nation of static information parameters with a single dy-
namic information parameter leads to a limited exploration
space and thus supports the paper’s conclusion that 32 bit
ASLR is not effective for the return-to-libc attack [13]. A
switch to a 64 bit architecture would increase the diversity
of delta mmap to 232 = 4, 294, 967, 296, increasing the ef-
fectiveness of ASLR. However, we should note that making
static information parameters dynamic with sufficient di-
versity would do more to significantly increase the overall
diversity of the system, even for 32 bit architectures.

4. DISCUSSION AND FUTURE WORK
This paper represents a second step toward our goal of

defining a complete theory for Moving Target Defenses. As
discussed previously [3, 18] the implementation of an effec-
tive MTD mechanism only makes sense in the context of a
specific threat model. The cyber attack theory presented
herein encourages MTD designers and researchers to for-
mally specify and compose attack types to discover the ex-
act system information parameters of interest and how they
interact with specific attacks, the attacker’s knowledge, and
the target system. Specification and analysis of attacks will
enable MTD designers to potentially ignore unrelated in-
formation parameters while focusing on those most critical,
dramatically limiting the scope and cost of MTD systems
without sacrificing effectiveness.

Although the relationship between attackers and targets
and configuration changes and their effect on various attacks
type is becoming evident, we have yet to formally link cyber
attack theory to MTD system theory. Our next step is to
formally define the relationships between these two theories
to produce a complete theory of MTD, which will support
formal specification of the interplay between high level at-
tackers and system goals as well as the impact of different
types of adaptations on various types of attacks.

In [18], we motivated the need for a new definition of at-
tack surface for MTD systems, which we have yet to define.

However, it seems clear that the attack surface must be re-
lated to the information parameters used by potential attack
types as well as the the target system itself. Clearly, if an
information parameter in the attack surface is a configura-
tion parameter of the MTD system, it is highly likely that it
should be a candidate for diversification and randomization
via the MTD system.

In Section 2.5 we showed how, when attempting to gain
the value of a set of information parameters, an MTD sys-
tems can force attackers to expend an exponential effort as
opposed to the linear effort required in static systems [1].
The key to this result in MTD systems is forcing attackers
to continually go back and regain information parameter val-
ues that have been changed by the MTD system. However,
this result also underlies the need to know exactly which con-
figuration parameters are the most important to disrupting
attacks. This can only be determined by formally capturing
the possible MTD configuration parameters and the attacks
they are attempting to stop.

Hobson et,al. [3] claim that measuring unpredictability in
MTD systems is mathematically possible if both the threat
and the attack surface can be adequately quantified. In [17],
we proposed an analytical model for analyzing the effec-
tiveness of MTD systems that, when combined with MTD
System Theory and Cyber Attack Theory, can be enhanced
to provide a more fine grained model to show the interac-
tion between key MTD parameters such as Ta, Pstatic, the
attack surface, the configuration space and adaptation in-
terval. The model will allow MTD designers to see how
different parameter settings will impact security in terms of
intrusion success likelihood and would be a powerful tool
that will allow MTD designers to make trade-off decisions
when implementing such systems.

5. RELATED WORK
Various approaches to modeling attacks and threats have

been proposed within different areas of security. For in-
stance, in knowledge sharing, Moore et al. [9] emphasize
the need to better learn from previous attack data. Thus
they propose a structured and reusable way to document
information- security attacks that will allow security ana-
lysts to identify commonly occurring patterns derived from
real attack data. On the other hand, Steffan and Schu-
macher [15] propose a method that combines a graph- based
attack modeling technique (attack net) with a Web- based
collaboration tool (WikiWeb) to improve knowledge sharing
and collaboration between security experts.

Schneier [12] advances the idea of attack trees, a formal,
methodical way of describing the security of systems, based
on varying attacks. An attack is represented in a tree struc-
ture, whose root is the attack goal and whose leaves branches
are different ways of achieving that goal. Further, Çamtepe
and Yener [2] propose a formal methodology, based on at-
tack trees, for network attack modeling and detection. They
extend the attack trees to include attack expiration time and
temporal dependencies between components.

In the attack graph space, Jajodia et al. [6] proposed
an innovative approach to proactive cyber security via at-
tack graphs called Topological Vulnerability Analysis, which
combines vulnerabilities as real attackers might, uncover-
ing all attack paths through a network based on scanning
data. Further, to determine the security impact of software
vulnerabilities on a network, Ou et al. [11] introduced Mul-

Table 2: Attack Type φ4 Decomposition
Type Ωpre Ωpost

φ4.1 ψdP .mmap base 6= ψxdP
.mmap base 〈ψxdP .mmap base, ψdP .mmap base〉

φ4.2 ψxdP
.mmap base = ψdP .mmap base ∧ ψxdP

.usleep offset 6= ψdP .usleep offset 〈ψxdP .usleep offset, ψdP .usleep offset〉
φ4.3 ψxdP

.mmap base = ψdP .mmap base ∧ ψxdP
.usleep offset = ψdP .usleep offset ∧

ψxdP
.delta mmap 6= ψdP .delta mmap

〈ψxdP .delta mmap, ψdP .delta mmap〉

VAL, an end-to-end framework and reasoning system that
conducts multi- host, multi-stage vulnerability analysis on a
network. Moreover, Ingols et al. [5] proposed NetSPA, which
can rapidly build a multiple-prerequisite graph that enables
defenders to quickly evaluate their network’s security. More
recently, Kordy et al. [7] published a comprehensive survey
on attack and defense modeling approaches that are based
on directed acyclic graphs (DAGs).

While some of the proposed approaches can complement
our work, this paper defines key concepts that support a
precise discussion of attacker knowledge, attack goals, at-
tack types, and attack instances in the context of a dynamic
target system. These concepts will allow us to precisely
compare and contrast approaches such as those discussed.

6. CONCLUSIONS
This paper presents a theory of cyber attacks, a criti-

cal step towards understanding and analyzing moving target
defenses. We introduced a new concept called information
parameters that supported the information- based defini-
tions of target systems and attacker’s knowledge. We also
used information parameters to define the concepts of attack
type, attack instance, and exploration space. To enhance the
understanding of our theory, we presented a mission plan-
ning system scenario and showed how cyber attack theory
can support the analysis of such attacks using a real world
return-to-libc attack example.

Acknowledgments. This work was supported by the U.S.
Air Force Office of Scientific Research (FA9550-12-1-0106)
and National Science Foundation (0954138, 1018703). Opin-
ions, findings, conclusions or recommendations are the au-
thor’s and do not necessarily reflect the agencies’ views.

7. REFERENCES
[1] S. M. Bellovin. On the brittleness of software and the

infeasibility of security metrics. Security & Privacy,
IEEE, 4(4):96–96, 2006.

[2] S. A. Çamtepe and B. Yener. A formal method for
attack modeling and detection. SA Camtepe, B.
Yener, 2006.

[3] T. Hobson, H. Okhravi, D. Bigelow, R. Rudd, and
W. Streilein. On the challenges of effective movement.
In Proceedings of the First ACM Workshop on Moving
Target Defense, pages 41–50. ACM, 2014.

[4] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R.
Rajagopalan, and A. Singhal. Aggregating
vulnerability metrics in enterprise networks using
attack graphs. Journal of Computer Security,
21(4):561–597, 2013.

[5] K. Ingols, R. Lippmann, and K. Piwowarski. Practical
attack graph generation for network defense. In
Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC), 2006.

[6] S. Jajodia and S. Noel. Advanced cyber attack
modeling, analysis, and visualization. Technical
report, George Mason University, Mar. 2010.

[7] B. Kordy, L. Pietre-Cambacedes, and P. Schweitzer.
Dag-based attack and defense modeling: Don’t miss
the forest for the attack trees. CoRR, abs/1303.7397,
2013.

[8] D. J. Leversage and E. James. Estimating a system’s
mean time-to-compromise. Security & Privacy, IEEE,
6(1):52–60, 2008.

[9] A. P. Moore, R. J. Ellison, and R. C. Linger. Attack
modeling for information security and survivability.
Technical report, CMU/SEI Report Number:
CMU/SEI-2001-TN-001, Mar. 2001.

[10] NITRD. National Cyber Leap Year Summit 2009
co-chairs’ report, networking and information
technology research and development. Technical
report, National Office for the Federal Networking and
Information Technology Research and Development
Program, Sept. 2009.

[11] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval:
A logic-based network security analyzer. In
Proceedings of the 14th Conference on USENIX
Security Symposium, 2005.

[12] B. Schneier. Attack trees. https://www.schneier.
com/paper-attacktrees-ddj-ft.html, 1999.

[13] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In Proceedings of the
11th ACM conference on Computer and
communications security, pages 298–307. ACM, 2004.

[14] M. P. Singh. Towards a science of security.
http://www.computer.org/portal/web/

computingnow/archive/january2013, 2013. Online,
accessed June 30, 2014.

[15] J. Steffan and M. Schumacher. Collaborative attack
modeling. In Proceedings of ACM Symposium on
Applied Computing (SAC), 2002.

[16] P. Team. PaX address space layout randomization
(ASLR), 2003.

[17] R. Zhuang, S. A. DeLoach, and X. Ou. A Model for
Analyzing the Effect of Moving Target Defenses on
Enterprise Networks. In Proceedings of the 9th Annual
Cyber and Information Security Research Conference,
pages 73–76. ACM, 2014.

[18] R. Zhuang, S. A. DeLoach, and X. Ou. Towards a
theory of moving target defense. In Proceedings of the
First ACM Workshop on Moving Target Defense,
pages 31–40. ACM, 2014.

