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Abstract

To determine the security impact software vulnerabilities
have on a particular network, one must consider interac-
tions among multiple network elements. For a vulnera-
bility analysis tool to be useful in practice, two features
are crucial. First, the model used in the analysis must be
able to automatically integrate formal vulnerability spec-
ifications from the bug-reporting community. Second,
the analysis must be able to scale to networks with thou-
sands of machines.

We show how to achieve these two goals by present-
ing MulVAL, an end-to-end framework and reasoning
system that conducts multihost, multistage vulnerability
analysis on a network. MulVAL adopts Datalog as the
modeling language for the elements in the analysis (bug
specification, configuration description, reasoning rules,
operating-system permission and privilege model, etc.).
We easily leverage existing vulnerability-database and
scanning tools by expressing their output in Datalog and
feeding it to our MulVAL reasoning engine. Once the in-
formation is collected, the analysis can be performed in
seconds for networks with thousands of machines.

We implemented our framework on the Red Hat Linux
platform. Our framework can reason about 84% of the
Red Hat bugs reported in OVAL, a formal vulnerability
definition language. We tested our tool on a real network
with hundreds of users. The tool detected a policy vio-
lation caused by software vulnerabilities and the system
administrators took remediation measures.

1 Introduction

Dealing with software vulnerabilities on network hosts
poses a great challenge to network administration. With
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the number of vulnerabilities discovered each year grow-
ing rapidly, it is impossible for system administrators
to keep the software running on their network machines
free of security bugs. One of a sysadmin’s daily chores is
to read bug reports from various sources (such as CERT,
BugTraq etc.) and understand which reported bugs are
actually security vulnerabilities in the context of his own
network. In the wake of new vulnerabilities, assessment
of their security impact on the network is important in
choosing the right countermeasures: patch and reboot,
reconfigure a firewall, dismount a file-server partition,
and so on.

A vulnerability analysis tool can be useful to such a sysad-
min, but only if it can automatically integrate formal vul-
nerability specifications from the bug-reporting commu-
nity, and only if the analysis can scale to networks with
thousands of machines. These two issues have not been
addressed by the previous work in this area.

We present MulVAL (Multihost, multistage Vulnerabil-
ity Analysis), a framework for modeling the interaction
of software bugs with system and network configura-
tions. MulVAL uses Datalog as its modeling language.
The information in the vulnerability database provided
by the bug-reporting community, the configuration infor-
mation of each machine and the network, and other rel-
evant information are all encoded as Datalog facts. The
reasoning engine consists of a collection of Datalog rules
that captures the operating system behavior and the in-
teraction of various components in the network. Thus in-
tegrating information from the bug-reporting community
and off-the-shelf scanning tools in the reasoning model is
straightforward. The reasoning engine in MulVAL scales
well with the size of the network. Once all the informa-
tion is collected, the analysis can be performed in sec-
onds for networks with thousands of machines.

The inputs to MulVAL’s analysis are,Advisories: What
vulnerabilities have been reported and do they exist on
my machines?Host configuration: What software and
services are running on my hosts, and how are they con-
figured?Network configuration: How are my network
routers and firewalls configured?Principals: Who are



the users of my network?Interaction : What is the model
of how all these components interact?Policy: What ac-
cesses do I want to permit?

In the next section, we give examples of the Datalog
clauses for each of these elements and the tools that can
be leveraged to gather the information.

2 Representation

MulVAL comprises a scanner—run asynchronously on
each host and which adapts existing tools such as OVAL
to a great extent—and an analyzer, run on one host when-
ever new information arrives from the scanners.

Advisories. Recently, theOpen Vulnerability Assess-
ment Language[26] (OVAL) has been developed that
formalizes how to recognize the presence of vulnerabili-
ties on computer systems. An OVAL scanner takes such
formalized vulnerability definitions and tests a machine
for vulnerable software. We convert the result of the test
into Datalog clauses like the following:

vulExists(webServer, ’CAN-2002-0392’, httpd).

Namely, the scanner identified a vulnerability with CVE
1 ID CAN-2002-0392 on machinewebServer. The vulner-
ability involved the server programhttpd. However, the
effect of the vulnerability — how it can be exploited and
what is the consequence — is not formalized in OVAL.
ICAT [18], a vulnerability database developed by the Na-
tional Institute of Standards and Technology, provides
the information about a vulnerability’s effect. We convert
the relevant information in ICAT into Datalog clauses
such as

vulProperty(’CAN-2002-0392’, remoteExploit,
privilegeEscalation).

The vulnerability enables a remote attacker to execute
arbitrary code with all the program’s privileges.

Host configuration. An OVAL scanner can be directed
to extract configuration parameters on a host. For exam-
ple, it can output the information of a service program
(port number, privilege, etc). We convert the output to
Datalog clauses like

networkService(webServer, httpd,
TCP, 80, apache).

That is, programhttpd runs on machinewebServer as
user apache, and listens on port80 usingTCP protocol.

Network configuration. MulVAL models network (router
and firewalls) configurations as abstract host access-control
lists (HACL). This information can be provided by a fire-
wall management tool such as the Smart Firewall [4].
Here is an example HACL entry that allowsTCP traffic
to flow frominternet to port80 onwebServer:

hacl(internet, webServer, TCP, 80).

Principals. Principal binding maps a principal symbol
to its user accounts on network hosts. The administrator
should define the principal binding like:

hasAccount(user, projectPC, userAccount).
hasAccount(sysAdmin, webServer, root).

Interaction. In a multistage attack, the semantics of
the vulnerability and the operating system determine an
adversary’s options in each stage. We encode these as
Horn clauses (i.e., Prolog), where the first line is the con-
clusion and the remaining lines are the enabling condi-
tions. For example,

execCode(Attacker, Host, Priv) :-
vulExists(Host, VulID, Program),
vulProperty(VulID, remoteExploit,

privEscalation),
networkService(Host, Program,

Protocol, Port, Priv),
netAccess(Attacker, Host, Protocol, Port),
malicious(Attacker).

That is, ifProgram running onHost contains a remotely
exploitable vulnerability whose impact is privilege es-
calation, the buggy program is running under privilege
Priv and listening onProtocol and Port, and the at-
tacker can access the service through the network, then
the attacker can execute arbitrary code on the machine
underPriv. This rule can be applied to any vulnerability
that matches the pattern.
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Figure 1: The MulVAL framework

Policy. In MulVAL, a policy describes which principal
can have what access to data. Anything not explicitly
allowed is prohibited. Following is a sample policy.

allow(Everyone, read, webPages).
allow(systemAdmin, write, webPages).

BecauseEveryone is capitalized, it is a Prolog variable,
so it can match any user.

Analysis framework. Since Datalog is a subset of Pro-
log, the encoded information can be directly loaded into a
Prolog environment and executed. We use the XSB [22]
environment because it supports tabled execution of Pro-
log programs. Tabling is a form of dynamic program-
ming that avoids recomputation of previously calculated
facts. Also, tabling provides complete declarative-style
logic programing because the order of rules does not af-
fect the result of the execution. The framework is shown
in Figure 1. An OVAL scanner runs on each machine
and outputs vulnerability report and relevant configura-
tion parameters. The tuples from the scanners, the net-
work configuration (represented as HACL), the deduc-
tion rules, and the administrator-defined security policy
are loaded into an XSB environment. A Prolog query
(see section 5.2) can then be made to search for policy
violations. Our program can also generate a detailed at-
tack tree.

The rest of the paper describes in detail the various com-
ponents of MulVAL. Section 3 briefly introduces the for-
mal vulnerability definitions from bug-reporting commu-
nities and how they are integrated into MulVAL. Sec-
tion 4 discusses the reasoning and input Datalog clauses
used in MulVAL and the analysis algorithm. Section 5
shows two examples that illustrate the analysis process.

Section 6 discusses how to conduct hypothetical vulner-
ability analysis in MulVAL. Performance data is shown
in section 7. Some design and implementation issues
are discussed in section 8. We compare our approach
with some related work in section 9 and conclude in sec-
tion 10.

3 Vulnerability specification

A specification of a security bug consists of two parts:
how to recognize the existence of the bug on a system,
and what is the effect of the bug on a system. The recog-
nition specification is only used in the scanning of a ma-
chine, whereas the effect specification is used in the rea-
soning process. Recently, the bug-reporting community
has started to provide these kinds of information in for-
mal, machine-readable formats. In the next two sub-
sections, we briefly describe OVAL, a formal specifica-
tion language for recognizing vulnerabilities, and ICAT,
a database that provides a vulnerability’s effect.

3.1 The OVAL language and scanner

The Open Vulnerability Assessment Language
(OVAL) [26] is an XML-based language for specifying
machine configuration tests. When a new software vul-
nerability is discovered, an OVAL definition can specify
how to check a machine for its existence. Then the OVAL
definition can be fed to an OVAL-compatible scanner,
which will conduct the specified tests and report the re-
sult. Currently, OVAL vulnerability definitions are avail-
able for the Windows, Red Hat Linux and Solaris plat-
forms. OVAL-compliant scanners are available for Win-
dows and Red Hat Linux platforms. OVAL vulnerability



definitions have been created since 2002 and new defini-
tions are being submitted and reviewed on a daily basis.
As of January 31, 2005, the number of OVAL definitions
for each platform is:

Platform Submitted Accepted
Microsoft Windows 543 489
Red Hat Linux 203 202
Sun Solaris 73 57
Total 819 748

For example, we ran the OVAL scanner on one machine
using the latest OVAL definition file and found the fol-
lowing vulnerabilities:

VULNERABILITIES FOUND:
OVAL Id CVE Id
-------------------------
OVAL2819 CAN-2004-0427
OVAL2915 CAN-2004-0554
OVAL2961 CAN-2004-0495
OVAL3657 CVE-2002-1363
-------------------------

We convert the output of an OVAL scanner into Datalog
clauses like the following:

vulExists(webServer, ’CVE-2002-0392’, httpd).

Besides producing a list of discovered vulnerabilities, the
OVAL scanner can also output a detailed machine config-
uration information in the System Characteristics Schema.
Some of this information is useful for reasoning about
multistage attacks. For example, the protocol and port
number a service program is listening on, in combination
with the firewall rules and network topology expressed
as HACL, helps determine whether an attacker can send
a malicious packet to a vulnerable program. Currently
the following predicates about machine configurations
are used in the reasoning engine.

networkService(Host, Program,
Protocol, Port, Priv).

clientProgram(Host, Program, Priv).
setuidProgram(Host, Program, Owner).
filePath(H, Owner, Path).
nfsExport(Server, Path, Access, Client).
nfsMountTable(Client, ClientPath,

Server, ServerPath).

networkService describes the port number and proto-
col under which a service program is listening and the
user privilege the program has on the machine. If the

same server is listening under multiple ports and proto-
cols, this is described by multiplenetworkService state-
ments.clientProgram describes the privilege of a client
program once it gets executed.setuidProgram speci-
fies an a setuid executable on the system and its owner.
filePath specifies the owner of a particular path in the
file system. nfsExport describes which portion of the
file system on an NFS server is exported to a client.
nfsMountTable describes an NFS mounting table entry
on the client machine. The scanner used in MulVAL
is implemented by augmenting a standard off-the-shelf
OVAL scanner, such that it not only reports the existence
of vulnerabilities, but also outputs machine configuration
information in the form of these predicates.

3.2 Vulnerability effect

One can find detailed information about the vulnerabil-
ities from OVAL’s web site2. For example, the OVAL
description for the bugOVAL2961 is:

Multiple unknown vulnerabilities in Linux kernel 2.4
and 2.6 allow local users to gain privileges or access
kernel memory, ...

This informal short description highlights the effect of
the vulnerability — how the vulnerability can be exploited
and the consequence it can cause. If a machine-readable
database were to provide information on the effect of
a bug such asbug 2961 is only locally exploitable, one
could formally prove properties likeif all local users are
trusted, then the network is safe from remote attacker.
Unfortunately, OVAL does not present the information
about the effect of a vulnerability in a machine readable
format. Fortunately, the ICAT database [18] classifies the
effect of a vulnerability in two dimensions: exploitable
range and consequences.

• exploitable range:local, remote

• consequence:confidentiality loss, integrity loss,
denial of service, andprivilege escalation

A local exploit requires that the attacker already have
some local access on the host. Aremoteexploit does
not have this requirement. Two most common exploit
consequences areprivilege escalationanddenial of ser-
vice. Currently all OVAL definitions have corresponding
ICAT entries (the two can be cross-referenced by CVE
Id). It would be nice if OVAL and ICAT be merged into
a single database that provides both information.



We converted the above classification in the ICAT data-
base into Datalog clauses such as

vulProperty(’CVE-2004-00495’,
localExploit, privEscalation).

4 The MulVAL Reasoning System

The reasoning rules in MulVAL are declared as Datalog
clauses. Aliteral, p(t1, . . . , tk) is a predicate applied to
its arguments, each of which is either a constant or a vari-
able. In the formalism of Datalog, a variable is an iden-
tifier that starts with an upper-case letter. A constant is
one that starts with a lower-case letter. LetL0, . . . , Ln be
literals, a sentence in MulVAL is represented as a Horn
clause:

L0 :- L1, . . . , Ln

Semantically, it means ifL1, . . . , Ln are true thenL0

is also true. The left-hand side is called theheadand
the right-hand side is called thebody. A clause with an
empty body is called afact. A clause with a nonempty
body is called arule.

4.1 Reasoning rules

MulVAL reasoning rules specify semantics of different
kinds of exploits, compromise propagation, and multi-
hop network access. The MulVAL rules are carefully de-
signed so that information about specific vulnerabilities
are factored out into the data generated from OVAL and
ICAT. The interaction rules characterize general attack
methodologies (such as “Trojan Horse client program”),
not specific vulnerabilities. Thus the rules do not need
to be changed frequently, even if new vulnerabilities are
reported frequently.

4.1.1 Exploit rules

We introduce several predicates that are used in the ex-
ploit rules.execCode(P,H,UserPriv) indicates that prin-
cipalP can execute arbitrary code with privilegeUserPriv
on machineH. netAccess(P, H, Protocol, Port) in-
dicates principalP can send packets toPort on machine
H throughProtocol.

The effect classification of a vulnerability indicates how
it can be exploited and what is the consequence. We have
already seen a rule for remote exploit of a service pro-
gram in section 2. Following is the exploit rule for re-
mote exploit of a client program.

execCode(Attacker, Host, Priv) :-
vulExists(Host, VulID, Program),
vulProperty(VulID, remoteExploit,

privEscalation),
clientProgram(Host, Program, Priv),
malicious(Attacker).

The body of the rule specifies that 1) theProgram is vul-
nerable to a remote exploit; 2) theProgram is client soft-
ware with privilegePriv3; 3) theAttacker is some prin-
cipal that originates from a part of the network where
malicious users may exist. The consequence of the ex-
ploit is that the attacker can execute arbitrary code with
privilegePriv.

The rule for the exploit of a local privilege escalation
vulnerability is as follows:

execCode(Attacker, Host, Owner) :-
vulExists(Host, VulID, Prog),
vulProperty(VulID, localExploit,

privEscalation),
setuidProgram(Host, Prog, Owner),
execCode(Attacker, Host, SomePriv),
malicious(Attacker).

For this exploit, the preconditionexecCode requires that
an attacker first have some access to the machineHost.
The consequence of the exploit is that the attacker can
gain privilege of the owner of a setuid program.

In our model, the Linux kernel is both a network ser-
vice running asroot, and a setuid program owned by
root. That is, the consequence of exploiting a privilege-
escalation bug in kernel (either local or remote) will re-
sult in a root compromise.

Currently we do not have exploit rules for vulnerabilities
whose exploit consequence is confidentiality loss or in-
tegrity loss. The ICAT database does not provide precise
information as to what confidential information may be
leaked to an attacker and what information on the system
may be modified by an attacker. ICAT statistics shows
that 84% of vulnerabilities are labeled with privilege-
escalation or only labeled with denial-of-service, the two
kinds of exploits modeled in MulVAL. It seems in reality
privilege-escalation bugs are the most common target for
exploit in a multistage attack.



4.1.2 Compromise propagation

One of the important features of MulVAL is the ability
to reason about multistage attacks. After an exploit is
successfully applied, the reasoning engine must discover
how the attacker can further compromise a system.

For example, the following rule says if an attackerP can
access machineH with Owner’s privilege, then he can
have arbitrary access to files owned byOwner.

accessFile(P, H, Access, Path) :-
execCode(P, H, Owner),
filePath(H, Owner, Path).

On the other hand, if an attacker can modify files under
Owner’s directory, he can gain privilege ofOwner. That
is because a Trojan horse can be injected by modified
execution binaries, whichOwner might then execute:

execCode(Attacker, H, Owner) :-
accessFile(Attacker, H, write, Path),
filePath(H, Owner, Path),
malicious(Attacker).

Network file systems Some multistage attacks also ex-
ploit normal software behaviors. For example, through
talking to system administrators we found that the NFS
file-sharing system is widely used in many organizations
and has contributed to many intrusions. One scenario is
that an attacker getsroot access on a machine that can
talk to an NFS server. Depending on the file server’s con-
figuration, the attacker may be able to access any file on
the server.

accessFile(P, Server, Access, Path) :-
malicious(P),
execCode(P, Client, root),
nfsExportInfo(Server, Path, Access, Client),
hacl(Client, Server, rpc, 100003)),

hacl(Client, Server, rpc, 100003) is an entry inhost
access control list(section 4.2), which specifies machine
Client can talk toServer through NFS, an RPC (remote
procedure call) protocol with number100003.

4.1.3 Multihop network access

netAccess(P, H2, Protocol, Port) :-
execCode(P, H1, Priv),
hacl(H1, H2, Protocol, Port).

If a principal P has access to machineH1 under some
privilege and the network allowsH1 to accessH2 through
Protocol andPort, then the principal can access hostH2

through the protocol and port. This allows for reasoning
about multihost attacks, where an attacker first gains ac-
cess on one machine inside a network and launches an
attack from there. Predicatehacl stands for an entry in
the host access control list (HACL).

4.2 Host Access Control List

A host access control list specifies all accesses between
hosts that are allowed by the network. It consists of a
collection of entries of the following form:

hacl(Source, Destination, Protocol, DestPort).

Packet flow is controlled by firewalls, routers, switches,
and other aspects of network topology. HACL is an ab-
straction of the effects of the configuration of these el-
ements. In dynamic environments involving the use of
Dynamic Host Configuration Protocol (especially in wire-
less networks), firewall rules can be very complex and
can be affected by the status of the network, the ability
of users to authenticate to a central authentication server,
etc. In such environments, it is infeasible to ask the sys-
tem administrator to manually provide all HACL rules.
We envision that an automatic tool such as the Smart
Firewall [4] can provide the HACL list automatically for
our analysis.

4.3 Policy specification

The security policy specifies which principal can access
what data. Each principal and data is given a symbolic
name, which is mapped to a concrete entity by the bind-
ing information discussed in section 4.4. Each policy
statement is of the form

allow(Principal, Access, Data).

The arguments can be either constants or variables (vari-
ables start with a capital letter and can match any con-
stant). Following is an example policy:

allow(Everyone, read, webPages).
allow(user, Access, projectPlan).
allow(sysAdmin, Access, Data).



The policy says anybody can readwebPages, user can
have arbitrary access toprojectPlan. AndsysAdmin can
have arbitrary access to arbitrary data. Anything not ex-
plicitly allowed is prohibited.

The policy language presented in this section is quite
simple and easy to make right. However, the MulVAL
reasoning system can handle more complex policies as
well (see section 4.6).

4.4 Binding information

Principal binding maps a principal symbol to its user ac-
counts on network hosts. For example:

hasAccount(user, projectPC, userAccount).
hasAccount(sysAdmin, webServer, root).

Data binding maps a data symbol to a path on a machine.
For example:

dataBind(projectPlan,workstation,’/home’).
dataBind(webPages, webServer, ’/www’).

The binding information is provided manually.

4.5 Algorithm

The analysis algorithm is divided into two phases:attack
simulationandpolicy checking. In the attack simulation
phase, all possible data accesses that can result from mul-
tistage, multihost attacks are derived. This is achieved by
the following Datalog program.

access(P, Access, Data) :-
dataBind(Data, H, Path),
accessFile(P, H, Access, Path).

That is, ifData is stored on machineH under pathPath,
and principalP can access files under the path, thenP can
accessData. The attack simulation happens in the deriva-
tion of accessFile, which involves the Datalog interac-
tion rules and data tuple inputs from various components
of MulVAL. For a Datalog program, there are at most
polynomial number of facts that can be derived. Since
XSB’s tabling mechanism guarantees each fact is com-
puted only once, the attack simulation phase is polyno-
mial.

In the policy checking phase, the data access tuples out-
put from the attack simulation phase are compared with
the given security policy. If an access is not allowed by
the policy, a violation is detected. The following Prolog
program performs policy checking.

policyViolation(P, Access, Data) :-
access(P, Access, Data),
not allow(P, Access, Data).

This is not a pure Datalog program because it uses nega-
tion. But the use of negation in this program has a well-
founded semantics [10]. The complexity of a Datalog
program with well-founded negation is polynomial in the
size of input [6]. In practice the policy checking algo-
rithm runs very efficiently in XSB (see section 7).

4.6 More complex policies

The two-phase separation in the MulVAL algorithm al-
lows us to use richer policy languages than Datalog with-
out affecting the complexity of the attack simulation phase.
The MulVAL reasoning system supports general Prolog
as the policy language. Should one need even richer pol-
icy specification, the attack simulation can still be per-
formed efficiently and the resulting data access tuples
can be sent to a policy resolver, which can handle the
richer policy specification efficiently.

No policy? Because the attack simulation isnotguided
by or dependent on the security policy, it is possible to
use MulVAL without a security policy; the system ad-
ministrator may find useful the raw report of who can
access what. However, the policy is useful in filtering
undesirable accesses from harmless accesses.

5 Examples

5.1 A small real-world example

We ran our tool on a small network used by seven hun-
dred users. We analyzed a subset of the network that
contains only machines managed by the system adminis-
trators.4 Our tool found a violation of policy because of
a vulnerability. The system administrators subsequently
patched the bug.
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Figure 2: Example

Network topology. The topology of the network is very
similar to the one in Figure 2. There are three zones
(internet, dmz andinternal) separated by two firewalls
(fw1 andfw2). The administrators manage thewebserver,
theworkStation and thefileserver. The users have ac-
cess to the public serverworkStation which they use for
their computing needs. The host access control list for
this network is:

hacl(internet, webServer, tcp, 80).
hacl(webServer, fileServer, rpc, 100003).
hacl(webServer, fileServer, rpc, 100005).
hacl(fileServer, AnyHost,

AnyProtocol, AnyPort).
hacl(workStation, AnyHost,

AnyProtocol, AnyPort).
hacl(H, H, AnyProtocol, AnyPort).

Machine configuration The following Datalog tuples
describe the configuration information of the three ma-
chines.

networkService(webServer , httpd,
tcp , 80 , apache).

nfsMount(webServer, ’/www’,
fileServer, ’/export/www’).

networkService(fileServer, nfsd,
rpc, 100003, root).

networkService(fileServer, mountd,
rpc, 100005, root).

nfsExport(fileServer, ’/export/share’,
read, workStation).

nfsExport(fileServer, ’/export/www’,
read, webServer).

nfsMount(workStation, ’/usr/local/share’,
fileServer, ’/export/share’).

The fileServer serves files for thewebServer and the
workStation through the NFS protocol. There are actu-
ally many machines represented byworkStation. They
are managed by the administrators and run the same soft-
ware configuration. To avoid the hassle of installing each
application on each of the machines separately, the ad-
ministrators maintain a collection of application binaries
under/export/share onfileServer so that any change
like recompilation of an application program needs to
be done only once. These binaries are exported through
NFS to theworkStation. The directory/export/www is
exported towebServer.

Data binding.

dataBind(projectplan, workStation, ’/home’).
dataBind(webPages, webServer, ’/www’).

Principals. The principalsysAdmin manages the ma-
chines with user nameroot. Since all the users are treated
equally, we model one of them as principaluser. user

uses theworkStation with user nameuserAccount. For
this organization, the primary worry is a remote attacker
launching an attack from outside the network. The at-
tackers are modeled by a single principalattacker who
uses the machineinternet and has complete control of
it. The Datalog tuples for principal bindings are:

hasAccount(user, workStation, userAccount).

hasAccount(sysAdmin, workStation, root).
hasAccount(sysAdmin, webServer, root).
hasAccount(sysAdmin, fileServer, root).

hasAccount(attacker, internet, root).
malicious(attacker).

Security policy The administrators need to ensure that
the confidentiality and the integrity of users’ files will not
be compromised by an attacker. Thus the policy is

allow(Anyone, read, webPages).
allow(user, AnyAccess, projectPlan).
allow(sysAdmin, AnyAccess, Data).



Results We ran the MulVAL scanner on each of the
machines. The interesting part of the output was that
workStation had the following vulnerabilities:

vulExists(workStation, ’CAN-2004-0427’, kernel).
vulExists(workStation, ’CAN-2004-0554’, kernel).
vulExists(workStation, ’CAN-2004-0495’, kernel).
vulExists(workStation, ’CVE-2002-1363’, libpng).

The MulVAL reasoning engine then analyzed this output
in combination with the other inputs described above.
The tool did indeed find a policy violation because of
the bugCVE-2002-1363 — a remotely exploitable bug in
the libpng library. A reasoning rule for remote exploit
derives that theworkStation machine can be compro-
mised. Thus theprojectPlan data stored on it can be
accessed by the attacker, violating the policy. Our sys-
tem administrators subsequently patched the vulnerable
libpng library.

One might be curious that there was only one vulnerabil-
ity that contributed to the policy violation though the host
workStation actually had four vulnerabilities. The other
three bugs on theworkStation are locally exploitable
vulnerabilities in the kernel. Since only trusted users ac-
cess these hosts, after patching thelibpng bug our tool
indicates the policy is no longer violated. These ma-
chines have uptimes in the order of months and upgrad-
ing the kernel would require a reboot. Patching these vul-
nerabilities would result in a loss of availability, which
is best avoided. The administrators can meet the secu-
rity goals without patching the kernel and rebooting the
workStation. We expect our tool to be useful in mission-
critical systems like commercial mail servers serving mil-
lions of users and servers running long computations.

5.2 An example multistage attack

We now illustrate how our framework works in the case
of multistage attacks. Let us consider a simulated attack
on the network discussed in the previous example. Sup-
pose the following two vulnerabilities are reported by the
scanner:

vulExists(webServer, ’CVE-2002-0392’,
httpd).

vulExists(fileServer, ’CAN-2003-0252’,
mountd).

Both vulnerabilities are remotely exploitable and can re-
sult in privilege escalation. The corresponding Datalog

clauses from ICAT database are:

vulProperty(’CVE-2002-0392’,
remoteExploit, privEscalation).

vulProperty(’CAN-2003-0252’,
remoteExploit, privEscalation).

The machine and network configuration, principal and
data binding, and the security policy are the same as in
the previous example.

Results The MulVAL reasoning engine analyzed the
input Datalog tuples. The Prolog session transcript is as
follows:

| ?- policyViolation(Adversary,
Access, Resource).

Adversary = attacker
Access = read
Resource = projectPlan;

Adversary = attacker
Access = write
Resource = webPages;

Adversary = attacker
Access = write
Resource = projectPlan;

We show the trace of the first violation in Appendix A.
Here we explain how the attack can lead to the policy
violation.

An attacker can first compromisewebServer by remotely
exploiting vulnerabilityCVE-2002-0392 to get control of
webServer. Since webServer is allowed to access
fileServer, he can then compromisefileServer by ex-
ploiting vulnerabilityCAN-2003-0252 and becomeroot
on the server. Next he can modify arbitrary files on
fileServer. Since the executable binaries on
workStation are mounted onfileServer, their integrity
will be compromised by the attacker. Eventually an inno-
cent user will execute the compromised client program;
this will give the attacker access toworkStation. Thus
the files stored on it would also be compromised.

One way to fix this violation is movingwebPages to
webServer and blocking inbound access fromdmz zone
tointernal zone. After incorporating these counter mea-
sures, we ran MulVAL reasoning engine on the new in-
puts and verified that the security policy is satisfied.



6 Hypothetical analysis

One important usage of vulnerability reasoning tools is
to conduct “what if” analysis. For example, the adminis-
trator would like to ask“Will my network still be secure
if two CERT advisories arrive tomorrow?”.After all, an
important purpose of using firewalls is to guard against
potential threats. Even there is no known vulnerability
in the network today, one might be discovered tomorrow.
Analysis that can reveal weaknesses in the network under
hypothetical circumstances is useful in improving secu-
rity. Performing this kind of hypothetical analysis is easy
in our framework. We introduce a predicatebugHyp to
represent hypothetical software vulnerabilities. For ex-
ample, following is a hypothetical bug in the web service
programhttpd on hostwebServer.

bugHyp(webServer, httpd,
remoteExploit, privEscalation).

The fake bugs are then introduced into the reasoning process.

vulExists(Host, VulID, Prog) :-
bugHyp(Host, Prog, Range, Consequence).

vulProperty(VulID, Range, Consequence) :-
bugHyp(Host, Prog, Range, Consequence).

The following Prolog program will determine whether a
policy violation will happen with two arbitrary hypothet-
ical bugs.

checktwo(P, Acc, Data, Prog1, Prog2) :-
program(Prog1),
program(Prog2),
Prog1 @< Prog2,
cleanState,
assert(bugHyp(H1, Prog1, Range1, Conseq1)),
assert(bugHyp(H2, Prog2, Range2, Conseq2)),
policyViolation(P, Acc, Data).

The two assert statements introduce dynamic clauses
about hypothetical bugs in two programs (Prolog back-
tracking will cycle through all possible combination of
two programs.). The policy check is conducted with the
existence of the dynamic clauses. If no policy violation is
found, the execution will back track and another two hy-
pothetical bugs (in different two programs) will be tried.
@< is the term comparison operator in Prolog. It ensures a
combination of two programs is tried only once. If there
exist two programs whose hypothetical bugs will break
the security policy of the network, the violation will be
reported bychecktwo. Otherwise the network can with-
stand two hypothetical bugs.

7 Performance and Scalability

We measured the performance of our scanner on a Red
Hat Linux 9 host (kernel version 2.4.20-8). The CPU is
a 730 MHz Pentium III processor with 128MB RAM.
The analysis engine runs on a Windows PC with 2.8GHz
Pentium 4 processor with 512MB RAM. We constructed
examples with configurations similar to the network in
section 5, but with different numbers of web servers, file
servers and workstations.

To analyze a network in the MulVAL reasoning engine,
one needs to run the MulVAL scanner on each host and
transfer the results to the host running the analysis en-
gine. The scanners can execute in parallel on multiple
machines. The analysis engine then operates on the data
collected from all hosts. Since the functioning of the
scanner is the same on various hosts, we measured the
scanner running time on one host. We measured the run-
ning time for the analysis engine for real and synthetic
benchmarks. The running times (in seconds) are as:

MulVAL scanner 236 s
§5.1 0.08

MulVAL 1 host 0.08
reasoning 200 hosts 0.22

engine 400 hosts 0.75
1000 hosts 3.85
2000 hosts 15.8

MulVAL scanneris the time to run the scanner on one
(typically configured) Linux host; in principle, the scan-
ner can run on all hosts in parallel. The benchmark§5.1
is the real-world 3-host network described in section 5.1.
Each benchmark labeled “n hosts” consists ofn similar
Linux hosts, (approximately one third web servers, one-
third file servers, and one-third workstations), with host
access rules (i.e., firewalls) similar to§5.1. Our reason-
ing engine can handle networks with thousands of hosts
in less than a minute.

A typical network might have a dozen kinds of hosts:
many web servers, many file servers, many compute ser-
vers, many user machines. Depending on network topol-
ogy and installed software (e.g., are all the web servers in
the same place with respect to firewalls, and are they all
running the same software?) it may be possible that each
group of hosts can be treated as one host for vulnerabil-
ity analysis, so thatn = 12 rather thann = 12, 000. It
would be useful to formally characterize the conditions
under which such grouping is sound.
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Figure 3: Hypothetical analysis.For a network of 1000 hosts

running 20 kinds of installed software, analyzing securityassuming the

existence of any 1 unreported vulnerability takes 12 seconds.

To test the speed of our hypothetical analysis, we con-
structed synthesized networks with different numbers of
hosts and different numbers of programs. Each program
runs on multiple machines. Since the hypothetical analy-
sis goes through all combination of programs to inject
bugs, the running time is dependent on both the num-
ber of programs and the number of hypothetical bugs.
Figure 3 shows the performance with regard to differ-
ent number of hosts, number of programs and number of
injected bugs. The running time increases with the num-
ber of hypothetical bugs, because the analysis engine will
need to go through

(

n

k

)

combinations of programs, where
n is the number of different kinds of programs andk is
the number of injected bugs.k = 0 is the case where no
hypothetical bug is injected. The performance degraded
significantly with the increase ofk. But it still only takes
273 seconds fork = 2 on a network with1000 hosts
and20 different kinds of programs. Since hypothetical
analysis can be performed offline before the existence of
a bug is known, it is not important to have fast real-time
response time. The degraded performance is acceptable.
Figure 3 shows our system can perform this analysis in a
reasonable time frame for a big network.

The input size to the MulVAL reasoning engine is:

Data Source1 hosts=200 =2000
Data Bind sys admin 26 3004 lines
Policy sys admin 3 3
Principal Bind sys admin 10 10
HACL Smart Firewall 342 3342
Scanner Output OVAL/ICAT 1222 12022

Coverage Our system can reason about privilege es-
calation vulnerabilities and denial of service vulnerabil-
ities. We cannot currently reason about confidentiality
loss or integrity loss vulnerabilities. Overall, we could
reason about 84% of the Red Hat Linux bugs reported
in OVAL. The detailed statistics are (as of January 31,
2005):

OVAL definitions for Red Hat 202
Those with PrivEsc or only DoS 169
Coverage 84%

Size of our code base To implement our framework
on Red Hat platform, we adapted the OVAL scanner and
wrote the interaction rules. The size of our code base is:

Module Original New
OVAL scanner 13484 668 lines
Interaction rules 393

The modularity and simplicity of our design allowed us
to effectively leverage the existing tools and databases by
writing about a thousand lines of code. We note that the
small size and declarative style of our interaction rules
makes them easy to understand and debug. The interac-
tion rules model Unix-style security semantics. We fore-
see that to reason about Windows platforms in addition,
the effort involved is comparable. The rules are indepen-
dent of the vulnerability definitions.

7.1 Scanning a distributed network

We measured the performance of running the MulVAL
scanner in parallel on multiple hosts. We used PlanetLab,
a worldwide testbed of over 500 Linux hosts connected
via the Internet [20]. We selected 47 hosts in such a way
as to get geographical diversity (U.S., Canada, Switzer-
land, Germany, Spain, Israel, India, Hong Kong, Korea,

1The indicated “Source” shows what person or tool would provide
the information in a real installation; for this benchmark measurement,
we constructed the data synthetically.



Japan). We were able to log into 39 of these hosts; of
these, we successfully installed the scanner on 33 hosts.5

We ran a script that, in parallel on 33 hosts, opened an
SSH session and ran the MulVAL scanner. We assume
that many hosts were carrying a normal workload, as we
made no attempt to reserve them for this use. The first
host responded with data in 1.18 minutes; the first 25
hosts responded within 10 minutes; the first 29 hosts re-
sponded within 15 minutes; at this point we terminated
the experiment.

For a local area network, we expect fast and uniform re-
sponse time. But for distributed networks, we recom-
mend that scanning be done asynchronously. Each ma-
chine, either when its configuration is known to have
changed or periodically, should scan and report configu-
ration information. Then, whenever newly scanned data
arrives or whenever new vulnerability data is obtained
from OVAL or ICAT, the reasoning engine can be run
within seconds.

8 Discussion

8.1 Implementing a scanner

Currently the MulVAL scanner is implemented by aug-
menting the standard off-the-shelf OVAL scanner. The
OVAL scanner is overloaded with both the task of col-
lecting machine configuration information and the task
of comparing the configuration with formal advisories to
determine if vulnerabilities exist on a system. The draw-
back of this approach is that when a new advisory comes,
the scanning will have to be repeated on each host. It
would be more desirable if the collection of configura-
tion information can be separated from the recognition of
vulnerabilities, such that when a new bug report comes,
the analysis can be performed on the pre-collected con-
figuration data.

There are also many other issues related to scanning,
such as how to deal with errors in configuration files.
A full discussion of configuration scanning is out of the
scope of this paper.

8.2 Modeling normal software behavior

Let us consider thesudo program in GNU/Linux oper-
ating system. It is a mechanism to enable a permitted
user to execute a command as the superuser or another

user, as specified in thesudoers configuration file. Upon
execution, thesudo program runs with superuser privi-
leges and the command supplied as argument is executed
as superuser or another user depending on the configura-
tion.

Suppose that there is a misconfiguration in thesudoers

file that lets any user execute any command as userjoe.
In order to do so the scanner must understand the config-
uration filesudoers and the interaction rules modeling
the behavior of programsudo must be added. In general,
we expect that we need to model the normal software be-
havior of a small number of programs. Although it’s easy
enough to model new programs using Datalog clauses, a
substantial advantage of our approach has been that the
set of modeling clauses grows much more slowly than
the number of advisories.

9 Related Work

There is a long line of work on network vulnerability
analysis [27, 25, 23, 24, 1, 17]. These works did not ad-
dress how to automatically integrate vulnerability speci-
fications from the bug-reporting community into the rea-
soning model, crucial for applying the analysis in prac-
tice. A major difference between MulVAL and these pre-
vious works is that MulVAL adopts Datalog as the mod-
eling language, which makes integrating existing bug data-
bases straightforward. Datalog also makes it easy to fac-
tor out various information needed in the reasoning process,
which enabling us to leverage off-the-shelf tools and yield
a deployable end-to-end system.

Ritchey and Amman proposed using model checking for
network vulnerability analysis [23]. Sheyner, et. al ex-
tensively studied attack-graph generation based on model-
checking techniques [24]. MulVAL adopts a logic-
programming approach and uses Datalog in the modeling
and analysis of network systems. The difference between
Datalog and model-checking is that derivation in Datalog
is a process of accumulating true facts. Since the num-
ber of facts is polynomial in the size of the network, the
process will terminate efficiently. Model checking, on
the other hand, checks temporal properties of every pos-
sible state-change sequence. The number of all possible
states is exponential in the size of the network, thus in the
worst case model checking could be exponential. How-
ever, in network vulnerability analysis it is normally not
necessary to track every possible state change sequence.
For network attacks, one can assume themonotonicity
property— gaining privileges does not hurt an attacker’s
ability to launch more attacks. Thus when a fact is de-



rived stating that an attacker can gain a certain privi-
lege, the fact can remain true for the rest of the analysis
process. Also, if at a certain stage an attacker has multi-
ple choices for his next step, the order in which he car-
ries out the next attack steps is irrelevant for vulnerabil-
ity analysis under the monotonicity assumption. While it
is possible that a model checker can be tuned to utilize
the monotonicity property and prune attack paths that do
not need to be examined, model checking is intended to
check rich temporal properties of a state-transition sys-
tem. Network security analysis requires only a small
fraction of model-checking’s reasoning power. And it
has not been demonstrated that the approach scales well
for large networks.

Amman et. al proposed a graph-based search algorithms
to conduct network vulnerability analysis [1]. This ap-
proach also assumes the monotonicity property of attacks
and has polynomial time complexity. The central idea
is to use anexploit dependency graphto represent the
pre- and postconditions for exploits. Then a graph search
algorithm can “string” individual exploits and find at-
tack paths involves multiple vulnerabilities. This algo-
rithm is adopted in Topological Vulnerability Analysis
(TVA) [13], a framework that combines an exploit know-
ledge base with a remote network vulnerability scanner
to analyze exploit sequences leading to attack goals. How-
ever, it seems building the exploit model involves manual
construction, limiting the tool’s use in practice. In Mul-
VAL, the exploit model is automatically extracted from
the off-the-shelf vulnerability database and no human in-
tervention is needed. Compared with a graph data struc-
ture, Datalog provides a declarative specification for the
reasoning logic, making it easier to review and augment
the reasoning engine when necessary.

Datalog has also been used in other security systems.
The Binder [7] security language is an extension of Dat-
alog used to express security statements in a distributed
system. In D1LP, the monotonic version of Delegation
Logic [15], Datalog is extended with delegation constructs
to represent policies, credentials, and requests in distrib-
uted authorization. We feel Datalog is an adequate lan-
guage for many security purposes due to its declarative
semantics and efficient reasoning.

Modeling vulnerabilities and their interactions can be dated
back to the Kuang and COPS security analyzers for Unix [2,
8]. Recent works in this area include the one by Ramakr-
ishnan and Sekar [21], and the one by Fithen et al [9].
These works consider vulnerabilities on a single host and
use a much finer grained model of the operating system
than ours. The goal is to analyze intricate interactions
of components on a single host that would render the

system vulnerable to certain attacks. The result of this
analysis could serve as attack methodologies to be added
as interaction rules in MulVAL. Specifically, it is possi-
ble that one can write an interaction rule that expresses
the attack pre and postconditions without mentioning the
details of how the low-level system components interact.
These rules can then be used to reason about the vulnera-
bility at the network level. Thus the work on single-host
vulnerability analysis is complementary to ours.

MulVAL leverages existing work to gather information
needed for its analysis. OVAL [26] provides an excel-
lent baseline method for gathering per-host configura-
tion information. Also, research in the past ten years has
yielded numerous tools that can manage network con-
figurations automatically [11, 12, 3, 4]. Although these
works do not directly involve vulnerability analysis, they
provide a good abstraction for the network model, which
is used in MulVAL and simplifies its reasoning process.

Intrusion detection systems have been widely deployed
in networks and extensively studied in the literature [5,
16, 14]. Unlike IDS, MulVAL aims at detecting poten-
tial attack pathsbeforean attack happens. The goal of
the work is not to replace IDS, but rather to complement
it. Having an a priori analysis on the configuration of
a network is important from the defense-through-depth
point of view. Undoubtedly, the more problems discov-
ered before an attack happens, the better the security of
the network.

10 Conclusion

We have demonstrated how to model a network system
in Datalog so that network vulnerability analysis can be
performed automatically and efficiently. Datalog enables
us to effectively incorporate bug databases into our analy-
sis and leverage existing vulnerability and configuration
scanning tools. With all the information represented in
Datalog, a simple Prolog program can perform “what-if”
analysis for hypothetical software bugs efficiently. We
have implemented an end-to-end system and tested it on
real and synthesized networks. MulVAL runs efficiently
for networks with thousands of hosts, and it has discov-
ered interesting security problems in a real network.

Notes

1Common Vulnerabilities and Exposures (CVE) is a list of
standardized names for vulnerabilities and other information



security exposures. http://cve.mitre.org

2http://oval.mitre.org/oval/

3DifferentPriv constructors distinguish between setuid and
non-setuid permissions. For lack of space in this paper, we have
not described the details of our privilege model, which com-
bines concrete users accounts and special symbols that repre-
sent groups of accounts.

4In this benchmark we did not model hundreds of user ma-
chines. We recommend that these should be modeled as we did
“internet,” as one machine. In this case, unlike “internet,” the
host would have non-malicious users, but would be assumed
to have many vulnerabilities. In our future work we plan to
experiment with such models; at present we recommend our
framework for networks of managed, not unmanaged, hosts.

5 Normally one needs root privileges to install the scanner;
PlanetLab gives its users fake “root” privileges in a chrooten-
vironment; for production use of MulVAL, root privileges are
advisable.
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A A Sample Attack Trace

In this section, we present a trace for the example pol-
icy violation discussed in section 5.2. We wrote a meta-
interpreter to generate the attack tree and visualize it in
plain text or html format. In the future we hope to use
XSB’s online justifier [19] to dump an attack graph and
visualize it.

The trace for one of the policy violation is shown below.
Each internal node is attributed with the rule used to de-
rive the node.

|-- policyViolation(attacker,read,projectPlan)
|-- dataBind(projectPlan,workStation,/home)
|-- accessFile(attacker,workStation,read,’/home’)
Rule: execCode implies file access

|-- execCode(attacker,workStation,root)
Rule: Trojan horse installation

|-- malicious(attacker)
|-- accessFile(attacker,workStation,write,’/sharedBinary’)
Rule: NFS semantics

|-- nfsMounted(workStation,’/sharedBinary’,fileServer,’/export’,read)
|-- accessFile(attacker,fileServer,write,’/export’)
Rule: execCode implies file access

|-- execCode(attacker,fileServer,root)
Rule: remote exploit of a server program

|-- malicious(attacker)
|-- vulExists(fileServer,CAN-2003-0252,mountd,remoteExploit,privEscalation)
|-- networkServiceInfo(fileServer,mountd,rpc,100005,root)
|-- netAccess(attacker,fileServer,rpc,100005)
Rule: multi-hop access

|-- execCode(attacker,webServer,apache)
Rule: remote exploit of a server program

|-- malicious(attacker)
|-- vulExists(webServer,CAN-2002-0392,httpd,remoteExploit,privEscalation)
|-- networkServiceInfo(webServer,httpd,tcp,80,apache)
|-- netAccess(attacker,webServer,tcp,80)
Rule: direct network access

|-- located(attacker,internet)
|-- hacl(internet,webServer,tcp,80)

|-- hacl(webServer,fileServer,rpc,100005)
|-- localFileProtection(fileServer,root,write,/export)

|-- localFileProtection(workStation,root,read,/home)
|-- not allow(attacker,read,projectPlan)

Figure 4: A sample attack tree


