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Abstract. Package dependency has been considered in many vulner-
ability assessment systems. However, existing approaches are either
coarse-grained and do not accurately reveal the influence and severity
of vulnerabilities, or do not provide comprehensive (both incoming and
outgoing) analysis of attack surface through package dependency. We
propose a systematic approach of measuring attack surface exposed by
individual vulnerabilities through component level dependency analysis.
The metric could potentially extended to calculate attack surfaces at
component, package, and system levels. It could also be used to calcu-
late both incoming and outgoing attack surfaces, which enables system
administrators to accurately evaluate how much risk that a vulnerabil-
ity, a component or a package to the complete system, and the risk that
is injected to a component or package by packages it depends on in a
given system. To our best knowledge, our approach is the first to quanti-
tatively assess attack surfaces of vulnerabilities, components, packages,
and systems through component level dependency.

1 Introduction

Attack surface usually refers to exploitable resource exposed to attackers [18,19].
The attack surface brought by a vulnerability could be dramatically enlarged
when more packages installed depending on the vulnerable application because
more resource can be accessed by the attacker to exploit the vulnerability.
Therefore the attack surface metric could serve as an effective indicator for
vulnerability assessment, which is considered as a critical task for security prior-
itization. Currently, the well known and de facto standard vulnerability scoring
system – common vulnerability scoring system (CVSS) [21] – quantifies the risk
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for each known vulnerability. Specifically, CVSS measures exploitability met-
rics (access vector, access complexity, and authentication) and impact metrics
(confidentiality, integrity, and availability loss) of a vulnerability, which are then
used to calculate a base score ranging from 0 to 10 indicating the severity of the
vulnerability.

Moreover, CVSS does not take into consideration of package dependency,
which, based on our analysis in this paper, dramatically affects the exploitability
of a vulnerability, especially when it appears in a prevalent package used by
many other packages. Therefore current CVSS does not reveal the fact that
vulnerabilities on highly depended packages usually bring larger attack surfaces
compared to those detected on a client application, even when they have the
same CVSS scores. Because packages depended by a number of applications are
usually more exposable than “ground” software (with no dependent), attackers
have more incentive to intrude a system through each of these dependents (or
their dependents). Therefore, the attack surface brought by package dependency
should not be ignored, and accurately measuring the attack surface is non-trivial
when evaluating vulnerability severity.

Researchers have proposed to measure risk with the consideration of package
dependency. Neuhaus et al. [23] study package dependency on Red Hat systems,
and infer beauty packages (with low risk) and beast packages (high risk) based
on the inter-package dependencies and historical vulnerability information for
each package. Their output can be used by developers to choose dependable
packages with low risks or historical vulnerabilities. But they only consider the
number of historical vulnerabilities as the risk factor for each package, rather
than measuring the attack surface brought by known vulnerabilities on a given
system. Raemaekers et al. [31] study the risk of a package brought by third party
libraries. They evaluate potential risks from third party applications by consid-
ering if the referenced packages are well scrutinized, the number of referenced
packages, and the number of classes with referenced libraries. However, they only
measure incoming risk (risk brought by third party libraries) at package level, and
do not consider any finer-grained (component level) or coarser-grained (system
level) incoming attack surface. Moreover, this work does not evaluate outgoing
attack surfaces, which are brought by individual vulnerabilities, components,
and packages to a system, and are important inputs when prioritizing security
related plans such as patching and hardening by system administrators, and
choosing dependent packages for developers.

With our approach, vulnerability and component level metrics can assist sys-
tem administrators in prioritizing patching or hardening plans towards the entire
system, while the overall package and system level metrics can help developers to
choose secure and reliable development images, platforms, and specific systems.
Our solution also helps other stakeholders to observe the evolution of package
dependency based attack surface for a given system.
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2 Overview

2.1 A Real Motivating Example

To motivate our attack surface analysis with package dependency, we systemati-
cally analyze the risk trend of a set of VMware products through VMware Secu-
rity Advisories (VMSA)1. Each VMSA indicates an official notification regard-
ing a set of known security vulnerabilities that affects VMware products, each
of which represents a Common Vulnerabilities and Exposures (CVE) record
included in the U.S. National Vulnerability Database (NVD2). Each VMSA
entry includes the origin of the vulnerabilities, vulnerability IDs, affected appli-
cations, and proposed solutions to the issue. Based on our analysis of VMSA
entries from July 2007 to December 2012, we find out that almost two thirds
(56/90) of the VMSAs include vulnerabilities originated from third party appli-
cations that affect VMware products, as Table 1 shows. For instance, ESX –
the last generation hypervisor – may be exploited by vulnerabilities described
in 27 VMSAs detected on the Linux management console, which provides man-
agement functions for ESX like executing scripts or installing third party agents
for hardware monitoring, backup, and system management [1]. For another
instance, Java Runtime Environment (JRE) is required by a number of VMware
products including ESX, Server, vMA, vCenter, and vCenter Update Manager,
therefore a known vulnerability on JRE could possibly make each of these prod-
ucts exploitable. Other major attack surface carriers include OpenSSL (9 out of
90), Kerberos 5 (8 out of 90), Apache Tomcat (6 out of 90), and libxml (6 out of
90). Note that one VMSA usually mentions multiple risks included in different
applications (See Table 1 for details).

Table 1. Risks from Third Party Packages to VMware Products

Third-party Package Name # of VMSAs Affected VMware Products

Console Operating System 27 ESX

JRE 11 ESX, Server, vMA, vCenter,
vCenter Update Manager

OpenSSL 9 ESX, ESXi, vCenter

kerberos5 8 ESX, ESXi

Apache Tomcat 6 ESX, vCenter

libxml 6 ESX

Our analysis with VMSA motivates a security metric with the considera-
tion of package dependency, which can help system administrator and software
developer to identify vulnerabilities on highly depended programs (e.g., JRE and
Linux console) with larger attack surfaces, compared to others such as client side
vulnerabilities (see Figure 1). Consequently, the system administrator may want
1 http://www.vmware.com/security/advisories/
2 http://nvd.nist.gov/

http://www.vmware.com/security/advisories/
http://nvd.nist.gov/
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Fig. 1. Comparison of attack paths to a vulnerable client side application Q and a
highly depended library P.

to patch a JRE vulnerability affecting a number of products earlier than others
even they may have the same CVSS score. A system level metric can also help
stakeholders in choosing system images with smaller attack surface and monitor
how the dependency based attack surfaces evolve over time.

2.2 Why Component Level Dependency Analysis?

From the perspective of software engineering, a system can be decomposed into
various of packages. One package can usually be further divided into one or more
components, each of which is made up from classes with related functions. From
above motivating example with VMSA, we have seen attack surfaces from third
party packages should not be ignored for risk analysis, and we need to look into
package dependencies to know how the attack surface is injected by external
packages to a system. When measuring such dependency based attack surfaces,
we analyze at component level for the following reasons.
More accurate dependency information than package level: Component level
dependency is finer-grained than package level, therefore it could locate attack
surfaces with higher accuracy. As Figure 2 shows, given two packages with the
same dependency map at package level, their attack surfaces could vary signif-
icantly if known vulnerabilities on the two packages are on components with
different dependency maps. Also, components on the same package should be
differentiated as their effects on the attack surface can be significantly different.
Less complex dependency information than class level: We keep our dependency
analysis at component level rather than go further into class or object level
because it is usually difficult to distinguish the sources or causes of vulnerabili-
ties at that level. Each component is a unit to realize a set of related functions.
Classes within the same component are usually more integrated and interacted
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Fig. 2. One package level dependency with two different component level dependencies.

compared to those in different components. Therefore for each vulnerability, its
exploitability highly depends on its accessibility at the component level. Previ-
ous studies also show that a vulnerability becomes significantly more exploitable
when attackers know that its component is accessible [25,26]. Besides, it is usu-
ally difficult to construct a map between vulnerabilities and the classes on which
they detected. Furthermore, proprietary software vendors usually do not disclose
their product information at class level. However security bugs and alerts are
usually maintained by database like Bugzilla at component level3, which makes
the vulnerability-component map retrievable [24]. Moreover, the complexity of
a class level dependency map is exponentially higher compared to a component
level dependency graph. We believe it is infeasible to achieve efficient analysis
with class level graph when dealing with a complex system including a large
number of software packages.

3 Dependency-Based Attack Surface Analysis

This section explains the details of our dependency-based attack surface analysis.
Before that we explain the definitions for various attack surface metrics.

3 A vulnerability is usually identified as a security bug in Bugzilla.
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3.1 Package Dependency at Component Level

In general, a package dependency refers to a code reuse by a component from
the library packages that it relies upon. Such code reuse could be at either
binary or source code level. For example, third party code could be called as
a compiled jar file or be imported as head files in source code. As shown in
Figure 2, each directed line represents one dependency relationship, where the
destination node represents the package or component that reuses some codes
from the source node package or component.

In our analysis, we do not differentiate dependency strength at component
level. Even though other metrics such as the number of references between the
two components can be obtained and used as the weight, the correlation between
these metrics and the strength of dependency is difficult to be determined and
judged without a comprehensive analysis over the source code of a target pack-
age. Therefore, we assign an equal weight 1 to each dependency between two
components in our analysis. But we still keep a weight variable in our algo-
rithms just for future customization of the dependency weight based on different
preferences.

3.2 Component-Based Attack Surface Analysis

Vulnerability Attack Surface. We define VAS as a system wide package
dependency based attack surface originated from a given vulnerability. VAS can
be used to compare the exploitabilities of different vulnerabilities within the same
system. The comparison results can be used to prioritize patching or hardening
tasks at vulnerability level.

As Algorithm 1 shows, for each vulnerability, we first identify its compo-
nent. Usually, the vulnerability-component map is provided by software vendors
through security advisories, e.g., Oracle Security Advisories4. Starting from the
component of the target vulnerability, we do a breadth first search until depth
d, where d is the level of dependency. For example, if package pa depends on pb
which depends on pc, then when evaluating pa, pa and pb are considered but not
pc if d is one. However, all of them are considered when d is larger than one. The
depth could be customized based on user preferences. Each component (directly
or indirectly) depending on the vulnerable component is considered as part of
the attack surface brought by the vulnerability. The impact factor on each com-
ponent is the attack surface of the target vulnerability exposed through that
component. We assign the CVSS score of the vulnerability as the impact factor
of the component where it resides (the ‘vulnerable component’)5. For compo-
nents on multiple depending chains from the vulnerable component, we only
consider its closest dependency and ignore the rest. For example, component ca
depends on cb which depends on cc, and ca also depends on cc directly. Under

4 http://www.oracle.com/technetwork/topics/security/
5 The calculation of impact factors of dependent components will be illustrated in the

following paragraph.

http://www.oracle.com/technetwork/topics/security/
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this circumstance, we ignore the dependency ca =⇒ cb =⇒ cc but only consider
ca =⇒ cc.

We define a damping factor6 (ranging from 0 to 1) to represent the resid-
ual risk after each level of dependency, which is used to estimate attack surface
from/to nested depended packages. The impact factor on a given component
equals to the multiplication of the dependency impact value from the component
it depends on (the dependency impact value is returned by function depImpact
(c1, c2) when c1 depends on c2. We assign “1” to all impact values in our exper-
iments because we treat all dependencies equally as mentioned in Section 3.1),
the damping factor and the impact factor of the component it depends on. Their
impact factor values will be eventually added up to one number, indicating the
attack surface of the given vulnerability to the whole system.

In a nutshell, we process a weighted (component-based) dependency graph
through breadth first search, we calculate an impact factor for each component
(within the dependency graph from the vulnerable component) from the given
vulnerability. We then add up all of these impact factors into one number, indi-
cating the attack surface exposed by the target vulnerability.

4 Future Work

We propose an attack surface at vulnerability level. The metric could also be
aggregated into higher levels. Component level attack surface will let state hold-
ers to know how much risk is brought by each individual component and plan
hardening accordingly. Package level attack surface can be used to determine
which package to depend upon among similar packages. System level attack sur-
face can be used to indicate the health level of individual systems/images. This
will help potential users to decide which image to use. Experiments can also
be conducted under different environments [5,16,28–30,41,42,46,53,54,56,57]
along with other approaches [14,15,32,34–40,44,45,48,51,52]. Moreover, pre-
sentation tools like attack graph [10,12,17,47,49,50,55] can be used to visualize
risks from software dependencies.

5 Related Work

Risks from package dependency have been well researched [2,4,7,13,23,25,31,
43,58]. Neuhaus et al. [23] evaluate risk per Red Hat package based on histor-
ical security vulnerabilities and package dependencies. But they do not eval-
uate attack surface exposed by individual vulnerabilities. Besides, they only
measure outgoing risk but not incoming risk for each package. Raemaekers et
al. [31] explore the risk from third party applications. Instead of measuring

6 We assign 0.1 as the damping factor for our experiments
7 We assign “1” to all DIV as mentioned in Section 3.1
8 The damping factor represents the residual risk after each level of dependency. User

can assign a value between 0 and 1 based on their own estimation.
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Algorithm 1. Dependency-based Attack Surface Measurement for Individual
Vulnerabilities: VAS(v0, d)

Input: Parameters: v0 – the Target vulnerability; d – Depth of assessment.
System configurations:
A map between the vulnerability v0 and its component component (v0).
A system wide component dependency map (dependents of component c are depen-
dOn(c)).

Output: The package dependency based attack surface VAS brought by vulnerability
v0.
c0 ← component(v0) {Retrieve the vulnerable component}
Queue Q ← (c0, 0) {Q is a queue of pairs (vulnerableComponent, depth)}
Table v0.t ← empty table
{v0.t is a table tracking processed components. The key is the affected component
and the value is its impact factor from vulnerability v0.}
v0.t.put(c0, v0.cvss) {The impact factor of c0 equals to the CVSS score of v0}
while Q is not empty do

(cn, n) ← dequeue(Q)
if n ≥ d then

continue {if current component has already reached the pre-defined deepest
level, then no need to retrieve its dependents}

end if
for each ck in dependOn(c) do

if v0.t.containsKey (ck) then
continue
{If the component has been previously processed, then we skip it}

end if
Q.enqueue(ck, n + 1) {Update Q in order to process dependents of ck if within
our predefined depth}
IFc = v0.t.get(c) {retrieve the impact factor of the current component c}
DIV = depImpact(c, ck)
{ depImpact(c, ck) returns dependency impact value7between c and ck.}
IF = DIV × DF × IFc {DF means Damping Factor8. This is the calculation
of impact factor (IF) of component ck}
V AS+ = IF {Cumulatively update attack surface}
v0.t.put(ck, IF ) {Update processed element table}

end for
end while
return VAS {Sum up all impact factors of v0 into VAS}

attack surface from individual known vulnerabilities, they focus on if a refer-
enced package is well scrutinized and the prevalence of usage per package. A set
of work [2,13,43,58] study the importance of component level dependency when
assessing software quality but no concrete security metric has been proposed.
Chowdhury et al. [4] evaluate risk from source code (class) level of dependency
(e.g. complexity, coupling, and cohesion). However, their work is about inferring
unknown vulnerabilities rather than evaluate attack surface for known vulnera-
bilities.
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A number of work study risks from Java applications [6,8,9,20,22,26,27].
Nasiri et al. [22] evaluate the attack surface from J2EE and .Net platform by
quantitatively comparing their CVSS scores directly, but no package dependency
is considered during the evaluation. Drake et al. [6] evaluate JRE memory cor-
ruption attack surface from engineering point of view, but they do not provide
quantitative measurement of the attack surface. Gong et al. [9] retrospect the
evolution of security mechanism on Java in the past ten years at high level. Both
Pérez et al. [27] and Goichon et al. [8] propose vulnerability detection approaches
after scanning Java source code. Marouf [20] classifies vulnerabilities specific to
Java and proposes possible countermeasures against these threats. Similarly, Par-
rend et al.[26] classify Java vulnerability at component level rather than source
code level.

Work regarding attack surface evaluation have been conducted by
researchers [3,11,18,19,24,24,33]. Neuhaus et al. [24] rank vulnerable compo-
nents in Firefox based on historical detected vulnerabilities. Similar to us, they
evaluate risk at component level. However, they consider these components as
independent units rather than inter-depended nodes.

The definition of attack surface is also adapted in industry. Similar to [18],
which evaluates attack surface over Linux systems, Microsoft attack surface9

focuses on Windows by enlisting a number of threats based on the configura-
tion of a given system. However, none of these takes package dependency into
consideration while measuring system attack surface.

6 Conclusions

We define attack surface exposed through package dependency at vulnerability
level. Besides outgoing attack surfaces, we propose algorithms calculating incom-
ing attack surfaces injected through package dependency into individual compo-
nents and packages. Our approach provides systematic methodology to prioritize
security tasks for system administrators, and provides inputs for choosing system
images for application developers with multiple dependency options.
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in java service-oriented components. Journal in Computer Virology, 1–12 (2012)

9. Gong, L.: Java security: a ten year retrospective. In: Annual Computer Security
Applications Conference, ACSAC 2009, pp. 395–405. IEEE (2009)

10. Homer, J., Zhang, S., Ou, X., Schmidt, D., Du, Y., Rajagopalan, S.R., Singhal,
A.: Aggregating vulnerability metrics in enterprise networks using attack graphs.
Journal of Computer Security 21(4), 561–597 (2013)

11. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Computer
Security in the 21st Century, pp. 109–137 (2005)

12. Huang, H., Zhang, S., Ou, X., Prakash, A., Sakallah, K.: Distilling critical attack
graph surface iteratively through minimum-cost sat solving. In: Proceedings of the
27th Annual Computer Security Applications Conference, pp. 31–40. ACM (2011)

13. Khan, M.A., Mahmood, S.: A graph based requirements clustering approach for
component selection. Advances in Engineering Software 54, 1–16 (2012)

14. Li, T., Zhou, X., Brandstatter, K., Raicu, I.: Distributed key-value store on hpc
and cloud systems. In: 2nd Greater Chicago Area System Research Workshop
(GCASR). Citeseer (2013)

15. Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang,
Z., Raicu, I.: Zht: A light-weight reliable persistent dynamic scalable zero-hop
distributed hash table. In: 2013 IEEE 27th International Symposium on Parallel
& Distributed Processing (IPDPS), pp. 775–787. IEEE (2013)

16. Liu, X., Edwards, S., Riga, N., Medhi, D.: Design of a software-defined resilient vir-
tualized networking environment. In: 11th International Conference on the Design
of Reliable Communication Networks (DRCN), pp. 111–114. IEEE (2015)

17. Lv, Z., Su, T.: 3D seabed modeling and visualization on ubiquitous context. In:
SIGGRAPH Asia 2014 Posters, SA 2014, pp. 33:1–33:1. ACM, New York (2014)

18. Manadhata, P., Wing, J.M.: Measuring a system’s attack surface. Technical report,
DTIC Document (2004)

19. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Transactions on
Software Engineering 37(3), 371–386 (2011)

20. Marouf, S.M.: An Extensive Analysis of the Software Security Vulnerabilities that
exist within the Java Software Execution Environment. PhD thesis, University of
Wisconsin (2008)

21. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnerabil-
ity scoring system version 2.0. In: Published by FIRST-Forum of Incident Response
and Security Teams, pp. 1–23 (2007)

22. Nasiri, S., Azmi, R., Khalaj, R.: Adaptive and quantitative comparison of J2EE
vs. net based on attack surface metric. In: 2010 5th International Symposium on
Telecommunications (IST), pp. 199–205. IEEE (2010)



Assessing Attack Surface with Component-Based Package Dependency 415

23. Neuhaus, S., Zimmermann, T.: The beauty and the beast: vulnerabilities in red
hat’s packages. In: Proceedings of the 2009 Conference on USENIX Annual Tech-
nical Conference, USENIX 2009, p. 30. USENIX Association, Berkeley (2009)

24. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable soft-
ware components. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security, pp. 529–540. ACM (2007)

25. Parrend, P.: Enhancing automated detection of vulnerabilities in java components.
In: International Conference on Availability, Reliability and Security, ARES 2009,
pp. 216–223. IEEE (2009)
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