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Abstract
We present an ethnographic study of secure software devel-

opment processes in a software company using the anthropo-
logical research method of participant observation. Two PhD
students in computer science trained in qualitative methods
were embedded in a software company for 1.5 years of total
research time. The researchers participated in everyday work
activities such as coding and meetings, and observed software
(in)security phenomena both through investigating historical
data (code repositories and ticketing system records), and
through pen-testing the developed software and observing
developers’ and management’s reactions to the discovered
vulnerabilities. Our study found that 1) security vulnerabilities
are sometimes intentionally introduced and/or overlooked due
to the difficulty in managing the various stakeholders’ respon-
sibilities in an economic ecosystem, and cannot be simply
blamed on developers’ lack of knowledge or skills; 2) acci-
dental vulnerabilities discovered in the pen-testing process
produce different reactions in the development team, often
times contrary to what a security researcher would predict.
These findings highlight the nuanced nature of the root causes
of software vulnerabilities and indicate the need to take into
account a significant amount of contextual information to un-
derstand how and why software vulnerabilities emerge during
software development. Rather than simply addressing deficits
in developer knowledge or practice, this research sheds light
on at times forgotten human factors that significantly impact
the security of software developed by actual companies. Our
analysis also shows that improving software security in the
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development process can benefit from a co-creation model,
where security experts work side by side with software devel-
opers to better identify security concerns and provide tools
that are readily applicable within the specific context of the
software development workflow.

1 Introduction

It has long been recognized that human factors play a dom-
inant role in ever-present software vulnerabilities, with sub-
stantial research devoted to this area [1–10]. These past efforts
have used a variety of research methods including surveys, in-
terviews, controlled experiments, studying code artifacts, and
analyzing data collected from secure-coding competitions.
It is also understood that there is a fundamental economic
problem underlying software insecurity [11], and in general
there often appears to be an unwillingness in industry to give
code security equal importance as other business consider-
ations, such as time to market and richness of features. It
is therefore important to recognize that the (in)security of
software produced by software companies is impacted not
only by individual developers’ knowledge and skills and the
types of programming languages/environment they use, but
also by the various incentives at play both in the market and
at the organizational level. Thus, to produce real impact in
secure software development, it is indispensable to study this
problem in the context of where the process happens, i.e., in
the software companies.

Recent work by Sundaramurthy et al. [12, 13] showed that
by employing the anthropological research method of partici-
pant observation [14, 15], researchers successfully obtained
deep insights into the challenges faced by security analysts in
security operations centers (SOCs). Moreover, embeddings in
the SOCs allowed researchers to produce both technical and
non-technical interventions that improved SOC operations by
uncovering and addressing the pain points in the overall work
process and environment. Encouraged by the success in that
work, we conducted an extensive ethnographic study in a soft-
ware company, using the same method of participant observa-
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tion. Two PhD students in computer science were trained in
qualitative methods by an anthropologist and spent 1.5 years
of total research time doing fieldwork in the company. They
participated in everyday work activities in the company such
as coding and meetings, and observed software (in)security
phenomena both through investigating historical data (code
repositories and ticketing system records), and through pen-
testing the developed software and observing developers’ and
management’s reactions to the discovered vulnerabilities. The
fieldworkers then shared their observations with a larger re-
search team that includes the anthropologist and computer
science professors collaborating on this research.

In this paper we report our findings on specific examples
where incentive structures, organizational relationships, work
flow, and other contextual factors shape how security consid-
erations come into play (or not) during the development and
updating of software. Some findings were not what we would
have expected before the research and shed light on some deep
relationships between secure software development and the
various incentive structures inherent in the software industry.
We present them in the hope of eliciting a broader look into
the secure software development process, taking into account
at times forgotten human factors that significantly impact the
security of software developed in companies.

Finally, through the fieldwork, the embedded researchers
were able to make interventions into the firm’s software de-
velopment process, providing methods and tools to help fix
discovered vulnerabilities and prevent similar mistakes from
occurring in the future. In doing so, we found that the fact that
the fieldworkers were part of the software development team
became a major reason that the methods and tools they pro-
vided actually worked within the context of the company and
were taken up by the developers. This co-creation approach
provides a model for how security experts may increase their
ability to improve the security of software.

2 Research Methods

The main method utilized in this research was participant
observation [14, 15]. This method was developed by anthro-
pologists and sociologists as an effective way to study human
behaviors and cultures through participating in daily activities
and observing people’s behaviors through long-term study
(typically more than a year). These activities help researchers
obtain a solid understanding of a particular culture and gain
insights into subjects’ activities, knowledge, and habits. By
adapting this approach to work within a software company,
we can provide an in-depth examination of the complexity of
the software development process, the various incentive struc-
tures among the stakeholders impacting human behaviors,
and the tight coupling of both technical and human factors
that impact software security.

In this research, the participant observers were two com-
puter science PhD students, each of whom underwent system-

atic training in qualitative research method under the guidance
of the anthropologist (Lende) on our research team. Being
CS students and possessing a substantial amount of security
knowledge enabled them to get quickly immersed into the
company’s software development process and start observing
practices that might have an impact on the software products’
security. Being inside the company enabled them to observe
both contemporary events as they unfolded, as well as past
events studied through ticketing systems and checking the
relevant code in the repositories. The students’ role in the com-
pany – working as if they were an employee of the company
– helped with two important assets of our research. First, their
daily interactions with the developers while doing regular
on-the-job tasks provided a unique angle to observe the sub-
jects’ authentic behaviors as they performed their job duties.
Second, they not only acted as passive observers but as advo-
cates of software security inside the company. This approach
enabled the team to observe how the various stakeholders
reacted to discoveries of security vulnerabilities, providing
valuable insights into why those vulnerabilities were intro-
duced in the first place and the constraints under which they
could be fixed (or not).

Each researcher worked at the company 20 hours a week,
spread across three week-days. One researcher worked for 12
months and the other for 6 months. The researchers were not
paid directly by the company. However, the company provided
both financial and in-kind contributions to this research. In
general, the researchers’ tasks included debugging existing
implementations to find bugs’ root causes, writing code fixes
or implementing new features, performing code reviews, and
software quality assurance. The researchers took field notes
about their observations, including both security issues found
in the software and everyday interactions with developers
and other employees involved in the development process.
Notes had two forms: descriptive and insightful. Descriptive
notes were intended to be as informative as possible, avoiding
personal judgments or opinions. Insightful notes aimed to
capture “ah-ha” moments and provide reflective analysis of
the situations experienced by the observers.

To derive research insights from the raw notes, we applied
the general inductive approach [16], augmented by specific
techniques for qualitative data analysis [17]. The initial step
was to find patterns that emerged directly from the data them-
selves. In our research, this process happened via weekly
meetings of the larger research team including both the field-
worker(s) and the professors, where comparisons could be
made across researchers, discussions could address both the
human and technical dimensions of software development
in a company, and plans made for further exploration of in-
teresting topics. Identifying themes and links between ideas
proved central to the inductive analysis, as well as develop-
ing contextual analysis around key examples. Data analysis
continued through the coding of field notes based on identi-
fied themes. These codes included themes related to software
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security, human elements of the work, important explanatory
concepts that emerged during the research, and data linked to
the key examples. A more detailed description of the coding
process as well as the codebook can be found in the Appendix.
Research meetings then shifted to further developing our joint
understanding of the data and identifying ways to explain
the observed patterns, as well as potential solutions to how
human and technical factors combined to shape (in)security.

It is important to highlight two unique aspects of our par-
ticipant observation approach. First, participant observation
is often a solo affair in the social sciences; having two embed-
ded researchers permitted the examination of the company
from two different but complementary perspectives. The re-
searchers were assigned different tasks, had slightly different
hours at the company, and developed relationships with com-
pany personnel at different points of time. This dual approach
to participant observation increases the robustness and va-
lidity of the data from this research. Second, the research
team consisted of experts in engineering and social science.
This multidisciplinary team participated with the embedded
researchers in developing the analysis over months, permit-
ting the identification of themes and ideas that crosscut disci-
plines and had both theoretical and applied dimensions. This
team-based approach to both data collection and analysis is
a significant contribution to how this type of research can be
done effectively.

3 Context

3.1 The Company and Its Products
At the company, the researchers worked in the same space
as four other developers, four support engineers, two net-
work engineers, one customer-facing onboarding specialist,
the CTO, a marketing and sales manager, and other staff. The
researchers’ work focused on two products: a solution for con-
trolling network access and a solution for allowing users to
securely access networks remotely. The solutions configured
third-party network devices (e.g., routers and access-points),
enforced operator-defined access-control policies, and man-
aged remediation flows. Typical customers were medium- and
large-size organizations, and common users were IT staff who
managed the organizations’ networks. Organization end users
attempting to connect to its network were prompted first by a
captive portal that asked for credentials. Once authenticated,
they were asked to remediate any issues that prevented them
from complying with policy, e.g., they might be required to
download and run a client-side monitoring agent and update
their anti-virus software.

3.2 Development Process
The company followed general agile development principles.
The development team held a scrum meeting every morn-

ing that lasted 15-30 minutes. In this meeting, each devel-
oper briefly commented about any progress accomplished
or roadblocks encountered the day before and discussed the
plan-of-work for the current day. This was an opportunity for
developers and managers to give and receive feedback from
each other. The meeting was led by the dev team lead. The
CTO was usually in the room but did not lead the meeting.

Work was organized, prioritized, assigned, and tracked us-
ing ticketing and code management systems. In general, tick-
ets were generated by developers, support techs, or customer-
facing specialists, ranked in prioritization meetings held by
the dev team lead and CTO, and assigned and tracked by the
dev team lead. After implementation, tasks were moved into
the peer-review stage in which other developers (often more
experienced ones) reviewed any code changes, added pending
tasks if necessary, and finally approved merge requests. After
code changes were approved by all reviewers, tickets were re-
assigned for quality assurance and integration testing, which
was often done by both developers and support/customer-
facing specialists. When all tests had been passed, tickets
were marked as “done” and merged into the code repository’s
development branch. When the set of target features for a
release had been implemented, the team lead created a re-
lease candidate branch. Every release candidate was tested
in-house one last time before being finally moved into release
and installed on customer environments.

3.3 Study Participants

The main participants in the study were the four software engi-
neers on the development team where the student researchers
were embedded. The dev team lead was an experienced de-
veloper who had been at the company long-term and written
many parts of the system. Two of the other developers had
been with the company for several years and another had
recently joined. One developer specialized in front-end devel-
opment and two were full-stack developers. The researchers
also interacted with other personnel at the company, including
the CTO, via company meetings, work communications, and
everyday activities such as breaks and lunches where people
often “talked shop” in informal ways.

3.4 Research Ethics

In our research, the employees of the company (developers,
support techs, and managers) were considered human subjects.
The study was reviewed and approved by the Institutional Re-
view Board (IRB). Researchers explained the study goals
to participants and obtained verbal informed consent from
participants. Field notes were anonymized, as well as discus-
sions during weekly research meetings. This paper follows
that same anonymization approach. Throughout the paper,
we use the term application under study (AUS) to refer to a
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specific application in the company’s product suite. We also
anonymized all product-specific terms in the paper.

One ethical dilemma that emerged during the research was
what to do when security vulnerabilities were discovered.
Given ethical standards among cybersecurity professionals,
we made the decision to present these discoveries to the soft-
ware development team. This process proved crucial to the
further development of the research. Rather than simply ob-
serving what happened while continuing to work at the com-
pany, the researchers raised these security concerns, and where
directed, actively worked on addressing them. This active en-
gagement led the research team to a co-creation model, where
research, programming, and security were all ongoing parts
of what happened during the fieldwork.

4 A Historical Study of a Security
Flaw/Feature: Silently Allow Failed Au-
thentication

In this section we describe a security flaw (or feature) that
was encountered by the first researcher soon after he started
working in the company. Studying the origin and evolving
usage of this feature provided a lens through which we ob-
served a number of dilemmas the developers and company
had to deal with. This could be helpful for understanding the
root causes of other similar security flaws. We first describe
this feature and the methods used to study it, then analyze
how it was used in multiple instances, and finally draw some
conclusions through our reflective analysis.

In this AUS, the process of authenticating users and de-
vices into the network involved assigning an authentication
state to every authentication attempt and subsequent authen-
tication queries. Authentication queries were self-triggered
by the AUS and configurable, i.e., AUS operators specified
how frequently users and devices must authenticate and the
AUS executed the corresponding assessments by querying
authentication servers, the operating system on the client’s
device, or sometimes prompting the user directly through a
web browser. The authentication states were: pass, fail, un-
reachable server, unknown username, and the silently-allow
(SA) state. Once an authentication flow entered the SA state,
it acquired an SA role, which was associated with a built-in
policy that granted full access to the protected network. From
a security perspective, SA was a dangerous authentication
bypass mode, providing access without full authentication
(hence, silently-allow). Specifically, an authentication attempt
assigned to an SA state was treated as successful and granted
full access to the network the AUS was expected to protect.
Further, the SA state was relatively persistent. Once a device
acquired an SA role, it remained in this state until forced to
re-authenticate (by default every 4 hours), or when an admin-
istrator manually added policies that would forcefully change
the role assigned to the device.

4.1 Specific Methods Adopted in This Study
In addition to the participant observation research methods
discussed before, the researcher also used the company’s tick-
eting system and code repositories to understand the rationale
behind the SA feature, particularly why it was introduced in
the first place and why it kept being used later. In the ticketing
system, the researcher located all records where comments
were made about the SA feature. Developers rarely used
security-related terms in the tickets’ description, so uncov-
ering the different instances of SA required the researcher
to correlate ticket information with the implementation code.
After an initial SA instance was discovered, the researcher
searched the code repositories for potential SA-related terms
and variable names, formalized the authentication flows, and
set up a lab for demonstrating that the SA state could be
triggered at runtime. These led to the discovery of other SA
instances not mentioned in tickets.

4.2 Observed SA Instances
The AUS had five configurable authentication back-ends:
three databases (one legacy implementation, a second one
for network guests, and a third one for admin user accounts)
and two integration components (one connecting to LDAP
servers, and a second connecting to SAML identity providers).
The SA state could be triggered in each of these configura-
tions, under one of the following scenarios: 1) the AUS failed
to communicate with some authentication server, 2) the AUS
was misconfigured, 3) an unexpected runtime exception oc-
cured, or 4) a back-end implementation was lacking.

4.2.1 Broken Integration

Broken integration with customer’s backend authentication
server was the main trigger of the SA state. In the LDAP
authentication flow, the AUS communicated with Active Di-
rectory (AD) servers. The connection parameters must be
pre-configured by network operators and stored in the AUS’s
internal database. At runtime, these parameters were pulled
from the database and LDAP search queries were executed.
If the network connection to the AD server failed (e.g., due to
misconfiguration, a physical link failure, DNS down, or time-
outs due to request overloads), no domain entries were found
in the AD server, or any other runtime exception occured (e.g.,
invalid credentials or duplicate entries in the AUS database),
then the device was assigned the SA role and obtained full
access to the network.

Most developers and support techs were aware of this SA
scenario and often framed it as a feature that alleviated the con-
figuration burden for network operators. It was often justified
by explaining that network operators were more interested in
not blocking legitimate users into the network than in protect-
ing their networks from intruders with stricter policies that
could affect network usability.
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For example, support techs said that there had been sce-
narios in which customers became very frustrated because
policy changes had forced most users out of the network and
required them to reauthenticate. According to interviewed
participants, network operators would see these scenarios as
“network outages” that would cause a high load of help-desk
support calls for them, which were not well-received.

It remains unclear how many customers actually preferred
this SA solution to one that would have required the customers
to fix their own integration issues. A support ticket generated
from a customer call four years before the study showed that
at least one customer would not prefer this SA solution:

“Customer doesn’t want failed authentication at-
tempts due to LDAP errors to fall into SA but to try
another server.”

There was scarce evidence on customer-facing documenta-
tion to support the claim that all customers were well aware
of SA authentication. SA was only mentioned as a footnote
in the release notes PDF of a version of the product that had
been released five years before the study, which read:

“A system failure will not cause a network-wide
outage and will silently-allow authentication for
existing and new users attempting network access.”

When the researcher raised the concern that some cus-
tomers may not be fully aware of SA, some participants ex-
plained that customers would be informed only if they asked
about the SA role (which was only visible when triggered, on
a secondary page on the UI). Since this SA instance was not
seen as a security vulnerability but as a feature, no action was
taken to remediate the issue.

4.2.2 Misconfiguration

The second way in which the SA state would be triggered
was when the AUS was misconfigured. Specifically, a drop-
down menu in the UI for policy creation in the administrative
portal allowed operators to select an SQL authentication op-
tion that mapped to a non-functional legacy database. This
would result in assigning an SA state to all authentication at-
tempts, regardless of which credentials were entered by users.
Developers explained:

“This authentication method is probably broken. I
believe it has been deprecated a long time ago.”

When asked why the UI was still showing this option, they
said, “I don’t know why but it should not be there.”

We were unable to find any written documentation other
than the code to confirm if and when this authentication
method had been officially deprecated, or if any customers
were still using it. An internal testing ticket from three years
back suggested that this authentication method had already

been deprecated, but some customer-facing documentation
still listed SQL authentication as a possible authentication
method. The issue was documented on a ticket by the re-
searcher but at the time of this writing was not yet prioritized
for development.

4.2.3 Unexpected Runtime Errors Due to Implementa-
tion Bugs

The SA state could also be triggered by unexpected runtime
errors. Several instances of authentication code were sur-
rounded in try-catch blocks that would catch SQL and other
runtime exceptions and set authentication state directly to
SA. Exceptions were somewhat common across the AUS
and sometimes caused it to halt operation. Some SQL ex-
ceptions occurred after upgrades that resulted in tables with
missing attributes, or because the AUS had incorrect database
permissions. Other runtime exceptions included null pointer
exceptions and out-of-bound array access.

Like the broken-integration case, this instance of SA was
an intentional choice. The code that implemented SQL server
authentication was added more than 15 years ago and since
then had been revisited a few times. Although not explic-
itly stated, it is possible that this SA instance was an ad-hoc
solution for dealing with code complexity and legacy imple-
mentations, allowing the AUS to continue execution despite
any incomprehensible bugs. The code preceeding the catch
blocks looked complicated (with several sections commented
out). From reading the code, it was hard to tell what code
paths could be executed in each scenario.

4.2.4 Unimplemented Protocol Flows

Perhaps the most critical SA instance was an unimplemented
SAML1 authentication flow that allowed users directly into
the network without even checking the credentials against the
SAML identity provider. Unlike previous SA instances which
were somewhat acknowledged by developers, developers said
that they were unaware of this SA instance and believed pre-
vious developers who no longer worked at the company were
responsible for this problem. When asked about the impact
of the problem, some developers said that

“Very few customers are probably using SAML au-
thentication on their networks.”

Yet, in a separate conversation, a support tech said that he
knew of at least ten customers who were using SAML for
authentication.

The SAML SA instance was fixed by the researcher by
implementing the missing SAML authentication flow.

1Security Assertion Markup Language, an XML-based standard language
for communicating security assertions, often used in single sign-on protocols.
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4.3 Reactions from Developers

According to members of the support team, SA was an “effec-
tive” solution to reduce customers’ frustration for the number
of help-desk calls that customers received when end-users
experienced network interruptions. SA addressed customers’
requirements for a product that would deliver an easy-to-use
and frustration-free experience for both network operators
and end-users. However, we found that in general, developers
were somewhat hesitant to talk about SA, either because they
did not understand how that part of the software worked or it
was code they were not proud of.

Attempts to explain the security implications of SA to the
developers and get the problem fixed was not a straightfor-
ward process. A common perception is that security vulnera-
bilities are introduced into code because developers are not
aware of the security issues involved, and explicit exposure
to the issues would allow them to understand and take imme-
diate corrective actions to remediate their software. This was
not our experience in the case of SA. First, for three out of the
four SA instances described above, developers were aware
of them. And for all the SA instances, they acknowledged
that it was problematic. However, even after we brought these
issues to their attention, the developers still did not implement
the expected security fixes. Moreover, reactions after being
exposed to the insecure code were not always consistent with
subsequent behaviors, which suggested that there were other
reasons why the SA problem persisted in the code. Some
examples are explained below.

– Blaming misconfiguration and broken integration issues
on customers. Developers complained that customers’
limited understanding of their product and networking
was the main reason why they weren’t able to configure
the product within their networks correctly. However,
sometimes even the most senior developers spent days
to get the product and network configured right.

– Writing limited documentation about authentication
flows, which made them difficult to understand for any-
one other than the code’s original authors. While initial
explanations were that there was not enough time to
write documentation, months later some participants ad-
mitted that some areas were not documented because
they believed their implementation could be wrong.

– Not practicing what they preached with respect to testing
practices. Everyone in the development team said things
like “we should all do more testing” and some asked
the researchers to write very detailed test cases. But
often they did not hold themselves to the same standards
and wrote very few tests for the code they wrote. There
were also many trivial tests in the codebase from the
time when they were using code coverage tools. Some
developers admitted that at times they would write trivial

tests and minimize code changes just to get the code
coverage numbers required for a release.

– Blaming previous developers who were no longer work-
ing for the company. Developers often talked about what
previous developers did was wrong, but it was not clear
whether anyone attempted to correct the problematic
code prior to being released.

In summary, the attempts of the researcher’s intervention
in the SA case were mostly unsuccessful. The developers
seemed to be aware that this security flaw could be a major
issue for the software and company in the future. However,
of all the SA instances identified by the researcher, only the
SAML flow was fixed (by the researcher). For the other in-
stances, developers did not see great value in fixing them.
They also thought that if they had to fix all security bugs the
company would go out of business.

4.4 Lessons Learned

Incomplete stories told by developers, attitude-behavior in-
consistencies, and poor documentation were good reasons
to believe that the introduction of the different instances of
SA deserved deeper analysis. In addition to the evidence di-
rectly related to SA, the embedded researchers collected infor-
mation about interactions among participants during design
meetings, prioritization meetings, and informal discussions.
Because the company’s organizational structure was organic,
they were able to interact not only with developers but also
with support techs, network engineers, and managers. These
interactions provided valuable information for analyzing the
deeper motives behind the introduction of the different SA in-
stances. Moreover, the research team identified relationships
that connected observed behaviors of the participants with the
evidence found on the ticketing systems, the code, the internal
wiki, and release notes. The main insights learned from the
analysis are described next.

1. Vulnerabilities are sometimes introduced to make er-
rors unnoticeable in an attempt to reduce the number of
customer support tickets.

One of the effects of SA was that it would make runtime
errors unnoticeable by customers. This reduced the chances
that customers would complain that the AUS was not working
correctly. When developers talked about these complaints,
they implied that customers would blame the company if the
AUS could not communicate with other servers, even if the
problem was extraneous to the AUS. As one developer stated:

"If the system breaks because we followed the speci-
fication and the system cannot talk to another server
because they are not following the spec, we are
probably going to lose money. So we need to code
to prevent that."
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Moreover, preventing those errors from bothering cus-
tomers would imply that less integration-support tickets
would be generated, reducing the chances that some of those
tickets would be escalated to the development team. Because
developers often complained about how much time they spent
debugging issues reported by customers (documented on
integration-support tickets), it is likely that developers intro-
duced SA in part to alleviate their job stress.

Integration-support tickets were created by support techs as-
sisting customers in integrating AUS with their other network
products (e.g., routers and switches). Whenever support techs
were unable to resolve tickets in this category, they would es-
calate them to the development team for further investigation
and potential development of bug fixes or custom integration
code. Although developers understood that assisting support
techs was necessary, they appeared to be more interested in
developing new features than fixing bugs or writing custom
integration code (which would later require more effort to be
maintained).

Further, debugging the issues described on the tickets was
challenging because it often required setting up environments
that were similar to their customers’, which was difficult be-
cause of the diversity of network device vendors. In this con-
text, SA reduced the number of integration-support tickets,
so developers would spend less time debugging integration
problems, and have more time to develop new features.

2. Managers and developers prioritize tasks by doing a
heuristic cost-benefit analysis, ranking tasks by urgency
and effort required, and security improvements rank low
and are usually not fixed because they are not considered
urgent or easy to implement in practice.

In general, tasks were prioritized based on heuristic urgency
and effort estimations for cost-benefit analysis. Task urgency
was often estimated by development managers who were also
part of sales and support-prioritization meetings. Urgency
estimations tried to measure how much positive or negative
impact some new feature or bug fix would have on the busi-
ness. For example, the development of a new feature could
help win or lose a new deal, or a bug fix could help retain or
let go of an existing customer. Task effort estimations were
often briefly discussed at scrum meetings and more in-depth
during “scrum poker” and prioritization meetings. In scrum
poker meetings developers estimated the effort required to
resolve certain development tasks by assigning them numbers
in a scale from 1 to 100. Every week, task priorities were
re-evaluated and reassigned or put on hold if necessary.

Of the four instances of SA, at the time of this writing our
field researcher was only assigned to fix one, the unimple-
mented SAML flow, which was considered to be more urgent.
Managers and developers believed that fixing the other SA
instances would have no positive impact on the business, so
they considered them not urgent, low priority, and thus did
not address them.

3. Some security vulnerabilities were introduced by
leaving deprecated features in production code, and this
could avoid breaking existing implementations.

Another possible reason why SA was still in production
code was that developers wanted to avoid introducing poten-
tial issues that could be caused by fixing the problem. For
instance, when asked why misconfigurations SA (Section
4.2.2) was still there, developers’ answer was that nobody
took the time to remove it. In fact, removing the SA implied
a risk, i.e., some other part of the software could break on
production systems. Thus developers likely would rather not
to take this risk, especially because there was no need for it
(customers were not demanding it). In summary, there were
just not enough incentives to remove it.

4. Some security vulnerabilities are not detected dur-
ing development partly because testing is not always em-
braced by developers.

Any of the SA instances could have been detected if the
appropriate tests were executed. However, because developers
didn’t necessarily like testing and could just write tests to pass
the minimum testing requirements, the tests were ineffective
and thus would not detect the SA vulnerabilities.

5 Live Discovery through Pen-testing during
Ethnography

This section describes how the research combined vulnera-
bility discovery with participant observation of developers’
behaviors and reactions. This technical-ethnographic com-
bination is similar to the method used in studying the SA
issues, but is also unique. Unlike in the SA case, none of
the pen-testing discovered vulnerabilities were intentionally
introduced by developers, and as such the researchers had the
opportunity to observe the unfolding of developers’ reactions
with the discovery of a totally unknown problem. It also pro-
vided the opportunity for researchers to intervene in a way
that resulted in a co-creation model, in which security experts
work jointly with developers to improve code security.

5.1 Specific Methods Adopted in This Study

Penetration testing, also known as pen-testing or ethical hack-
ing, is an authorized simulated cyber-attack process against
a computer system to reveal security flaws. The goal is to
identify weaknesses which might provide a passage for unau-
thorized users to gain access and alter the integrity of the com-
puter system. There are multiple software pen-testing method-
ologies, including the Open Web Application Security Project
(OWASP) [18], Open Source Security Testing Methodology
Manual (OSSTMM) [19], NIST SP 800-115 [20], Penetration
Testing Execution Standard (PTES) [21], and Information
System Security Assessment Framework (ISSAF) [22]. Re-
sults vary based on the way the process is performed.
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Two of the company’s products were picked by the re-
searcher for further study. By acquiring some information
and insights about the applications, the researcher started to
apply a customized penetration testing methodology. The ba-
sic information such as the software workflow, authentication
information, and so on was captured by talking with devel-
opers and the support team. Both products were designed
to work on a web platform, so OWASP’s top ten security
vulnerabilities [18] were chosen for the testing.

At the same time as developing the pen-testing process, the
researcher worked to gain the developers’ trust. This process
required building rapport, an understanding with research
informants, by participating in daily tasks and getting to know
individuals who worked there. The role of a security pen-
tester also needed accurate planning and time management.
Code injection was selected for the first vulnerability to be
tested. It is one of the well-known vulnerabilities which allows
attackers to inject malicious codes into a computer system
and change the course of execution. The result of a successful
injection can potentially be catastrophic. Before we describe
the pen-testing findings and developers’ reactions, we first
briefly introduce the three types of vulnerabilities found.

5.2 Vulnerabilities Found
• Cross-site Scripting (XSS): generally found on web plat-

forms. Attackers typically use web applications to in-
ject malicious codes into the application which can be
viewed by other users.

• HTML Injection: similar to XSS. However, instead of
inserting malicious scripts, the attacker can inject valid
HTML tags and modify the content of the target website.

• Shellcode Injection: a type of vulnerability that allows
an attacker to inject malicious code into a system and
provide the attacker a shell on the system.

5.3 Behaviors and Reactions from Developers
During the first day of pen-testing, an XSS was found in the
AUS by the researcher. The vulnerability was brought up
to the developer team, and a proof of concept was provided
for why it was significant. While they showed interest in the
finding, since the vulnerability was in a 3rd-party application
integrated with the AUS, their first reaction was to hope the
problem had been fixed by the 3rd-party. One participant said:

“This vulnerability belongs to our 3rd-party appli-
cation, and we did not develop this part. It is better
to upgrade the software and see if we will still have
the issue”

They also mentioned that it would be more interesting if the
researcher could find any vulnerability inside part of the com-
pany’s code. Thus, they expressed interest in security, but saw

solving this problem as the responsibility of an outside group
even though the application formed part of the company’s
software.

In the next round of testing, the researchers tried other parts
of the software to see if there were any other vulnerabilities.
Multiple XSS vulnerabilities were found. Developers were
both excited and concerned about the findings. They said
things like,

“If they want to test more, it seems that they will
find more things inside our software”

and

“We tried to minimize our bugs, but it seems some-
thing is wrong.”

Once again,the third-party issue came up:

“We are using Angular, and I thought we shouldn’t
have the XSS. Angular should take care of this is-
sue.”

On the same day, the researcher found another vulnerability
in the AUS; this time it was shellcode injection. The vulnera-
bility allowed attackers to inject their customized shellcode
into a valid file and upload it into the server and get backdoor
access with a powerful user’s account on the server. The at-
tacker must be someone who already had a regular account
inside the AUS web platform. The finding was interesting to
the researchers and the developers for different reasons. For
the research team, this was a critical vulnerability – customers
should never have escalated access to the server. They should
only be able to perform some limited commands on the OS
such as changing the network IP address. This essentially
allows their customers to jail-break out of the sandbox set
up on the server. Developers on the other hand were more
interested in understanding how access had been gained. They
said things like,

“Interesting! Could you show us how you got the
access?”

and

“What is your user’s privilege?”

At the same time, they discussed the risk in the context of the
product,

“because we already ship the OS to the clients with
everything inside it, it’s kind of okay! They have
the box already. ...We do not have any important
information on it.”

During the subsequent discussion with the developers, one
researcher asked, “Do you have any hard-coded password
or credentials?” The answer was “yes.” This hard-coded
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credential would allow a customer who successfully exploited
the shellcode injection vulnerability to see other customers’
information. Faced with this fact, the developers indicated
that this vulnerability was bigger than they originally thought,
and that they should take imminent action on it. However,
that did not come to fruition at the next group meeting, where
they continued to talk about these vulnerabilities. Based on
this discussion, the research team inferred that there were
other factors that affected the developers’ actions. In fact
they said “fixing the vulnerability has additional impacts and
may cause some problems for other parts of the application
or customers.” They also downplayed the significance of the
shellcode injection vulnerability, and said that the team should
focus on developing new features. They added,

“If we want to fix every bug in our system, we will
be out of business very soon.”

Contrary to the researchers’ initial hope, our intervention
effort to fix the discovered security vulnerabilities proved
ineffective in the context of the company’s overall functioning.
This moment helped the researchers realize that they needed to
rethink how security researchers engage developers to create
positive change.

It started by simply offering to work on the issue and build-
ing the tools and libraries for them to prevent XSS. The bug
was then fixed by one of the researchers. One challenge the
researcher faced was that the AUS was uniquely designed and
would only accept specific types of input entry for the vari-
ous fields. As a result, it was not possible for the researcher
to utilize standard input sanitization solutions, e.g., one that
removes all special characters, because that would break the
application. Working at the company and interacting with the
developers helped the researcher understand this uniqueness
and come up with a customized solution. It was a number of
specially designed regular expressions that enforce the proper
formats for the various types of fields. The researcher included
the application of these regular expressions in a standalone
Javascript file that can be invoked at the front-end pages. It
turned out that the company’s existing code already contained
a similar mechanism for checking other properties of front-
end input fields, e.g., if a field is empty. The researcher only
needed to extend this mechanism to include the regular ex-
pression checks he designed for preventing XSS. Developers
could then simply invoke these checks in the same manner
they had been doing for the other types of checks. This al-
lowed for easy integration of the security check into existing
code with minimum change, and was readily accepted by
the development team. For back-end input sanitization, the
researcher first tried to apply standard OWASP sanitization
functions for Java, which was the language the back-end was
written in. However, due to the uniqueness of the formatting
requirement of the AUS, those standard checks were blocking
some legitimate inputs. Thus the researcher needed to cus-
tomize those OWASP functions to work properly with the

AUS’s requirements. During the fixing process, another XSS
was found in the AUS. When the researcher brought up the
problem to the development team this time, they accepted it
very fast. A new ticket was created and the researcher was
asked to fix the issue as soon as possible: “...Go ahead and
fix this bug as well.”

This example highlights the importance of “being there”
for security experts to drive positive change for secure cod-
ing. The researcher was able to accomplish this in this case
due to two factors: 1) he understood the company’s existing
code and designed an effective security check that minimized
disruption; 2) he provided the needed security expertise in
designing the proper checks using regular expressions and
the customization of the OWASP functions, and this expertise
was delivered through code artifacts that were readily applica-
ble within the existing software workflow. Both factors were
important for this success.

The researcher tried later to bring up the shellcode injection
vulnerability once more in a discussion and tried to convince
them to start fixing the issue, but the suggestion was turned
down. One of the developers responded,

“It’s somewhere in our backlog. We didn’t do any-
thing about it, and no one has found that exploit so
far. So we are safe.”

This comment matched similar instances where developers
reacted as though if there were no problems at present, the vul-
nerabilities might not be an issue that needed urgent attention.
The research team considered a possible explanation why the
shellcode injection vulnerability was not treated as urgently
as the XSS. Exploiting the shellcode injection vulnerability
would require a rogue player that can be held accountable
(a customer’s IT staff member who possessed the regular
account access to the server). This may have alleviated the
concern on the company’s liability resulting from this vulner-
ability.

Later on in the research, an HTML injection was found
inside a newly developed part of the code. Like the XSS, the
issue was brought up to the developers. Initially, developers
mentioned,

“Angular should cover it and not allow the HTML
tag in the code! It seems it does not.”

During the next group meeting, they recognized that they had
omitted security issues previously. They said,

“When we discussed the development of the page,
we talked about everything except security and XSS
problems. They didn’t come to our mind.”

At this time, the researcher thought that the developers would
ask him to fix this issue like in the XSS case, but they started
to fix it by themselves and did not ask the researcher for
any help. Most interestingly, the developers created correct
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solutions to fix the HTML injection vulnerabilities, based on
the way the researcher solved the XSS problem. This showed
that the developers learned from the researcher how to create
security fixes within their code base, without being explicitly
taught so. They learned by simply observing the code artifacts
created by our researcher.

This is an example that illustrated the importance for secu-
rity experts to be in the development environment and “co-
create” security solutions with the developers. The difference
in the developers’ reactions in this case, compared to earlier
ones, pushed the researchers to realize that co-creation hap-
pens more in the moment, rather than trying to retroactively
fix things. Our earlier interventions mainly focused on fix-
ing vulnerabilities found in code written in the past. We had
success in getting some fixed (by the researchers). Whereas
in this case, the developers took their own actions and fixed
the bugs using the knowledge and tools provided to them by
the researchers. This shows that if security professionals are
present and part of the team when a product is in the process
of being designed and implemented, their views are more
likely to be taken into account when decisions about what to
do are being made. It was also the researcher’s feeling that
the quickness with which the development team accepted his
suggestion to fix this issue was related to the increased level
of trust he enjoyed from the development team at this point
in the research progress.

5.4 Analyzing the Findings
After initially finding the first bug in the pen-testing process,
the researcher assumed that developers did not know about
these security problems, and lack of security knowledge led
them to write code with the vulnerabilities. After working
with them on various tasks, he realized that they actually pos-
sessed quite a bit of security knowledge. As our research
progressed, group discussions and analysis of field notes high-
lighted some non-intuitive reasons for developers’ behaviors.
This indicates that there were other significant factors in caus-
ing these vulnerabilities. We outline these factors in the rest
of this subsection.

5.4.1 Developers Should Not Totally Trust Program-
ming Languages and Frameworks

One of the important conversations that the research team had
with the developers was that the developers believed that the
programming language/framework should take care of some
vulnerabilities by default.

"...Angular should take care of this vulnerability..."

In this case and according to Angular documents [23], the
Angular engine could handle most of the XSS and HTML in-
jection attack scenarios by sanitizing the input fields. Angular
documents also mentioned that developers need to take care of

backend servers to make sure injection vulnerabilities are not
introduced there. After analyzing our field notes carefully, we
found that the developers believed (incorrectly) that Angular
could handle all XSS and HTML injection vulnerabilities.

In the past decade, programming languages and frame-
works have been doing a great job in creating built-in security
measures to prevent accidental mistakes by developers, but
they still do not offer a comprehensive security solution. How
can developers know accurately where they can rely on lan-
guage/framework and where they must rely on their own code
to achieve a security property? Can this be communicated in
a way that does not require sophisticated knowledge on all
possible ways attack could happen?

5.4.2 Outsider vs. Insider, and from Deficit Model to Co-
Creation Model

One of the embedded researchers in the past worked as a pen-
tester for four security consulting companies in three coun-
tries for four years. In his experience, the pen-testers were
not incorporated into the development team. The developers
might only receive a document with discovered vulnerabili-
ties and statements about what they should or should not do.
This appeared to be a common industry approach to software
security pen-testing [24]. The problem was that the security
pen-testers did not understand how much workload the devel-
opers had, nor the actual reasons for the vulnerabilities. As a
result, this approach did not often lead to the desired changes
in the development process, but set up an outsider/insider dy-
namic, where developers felt the need to defend what they
had done and/or minimize the security issues. The developers
would say that the report came from an outside group who did
not really understand how software development was done,
and the security pen-testers would say that the developers
wrote defective code in the first place and did not appreciate
security, otherwise they would have done something to fix all
those problems. Having these past experiences, in contrast
with what he experienced in this research where he worked in-
side the development team as a software pen-tester, helped the
research team to understand the impact the outsider/insider
dynamic had on effectuating changes in software development
processes.

From our fieldwork experience, we clearly see how this
outsider/insider dynamic can play out. When we first found
the vulnerabilities about SA, XSS, or code injections, the
researchers’ initial thought was that the developers did not
know about these security issues. However, after researchers
explained to developers and developers had clearly under-
stood the technical details, still some vulnerabilities were not
fixed. It was only after further communication with the de-
velopers, reflecting on other relevant observations made by
the researchers, and brain-storming among the larger research
team, that we better recognized why some vulnerabilities were
not prioritized to be fixed. Most importantly, it is when we had
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this understanding, and produced an easy-to-apply solution
that fit into the company’s development workflow, that our
intervention was the most successful.

The point of view that if developers know better and work
harder, they should be able to write software without any
security flaws, can be characterized as the so-called “deficit
model,” where the problem of software insecurity is attributed
to the developers’ lack of knowledge or efforts. The solution
driven by this deficit model would mainly involve experts ex-
plaining to developers the various software security issues and
how to prevent them, and hoping this would drive the needed
changes. Research in fields such as education, anthropology,
and science communication have examined how using such a
deficit model does not prove as useful as imagined because
it localizes the problem inside the person and assumes that
simply fixing that internal lack will also successfully address
larger concerns such as successful learning, cross-cultural
understanding, and the application of science to at times con-
troversial topics [25–27]. One analytic concept of note that
emerged through the research was our own use of a “deficit
model” to initially interpret why people in the company did
not respond to security concerns. We assumed that they might
not have the knowledge or awareness to understand security
risks and recognize how and why particular aspects of the soft-
ware might increase those risks. Our research found that this
deficit model-driven approach was not working well. Simply
communicating security issues found and presenting solutions
for fixing them did not lead to the anticipated fixes.

Overcoming this “deficit model” in our own thinking
helped us to better interpret why participants responded or
not to security issues and to recognize how security concerns
existed alongside other factors that shaped their work. We
then developed a co-creation model, where developers and
security experts collaborate together. Co-creation is a form
of collaboration in which ideas and processes are shared and
improved together rather than kept to only one-party side. By
having a co-creation model, security auditors have the chance
to jump into the development process and provide the knowl-
edge and tools that developers can readily apply to prevent
vulnerabilities. Part of this co-creation model meant that our
embedded researchers did not work exclusively on security
but dealt with different tickets. This showed the developers
that the researchers knew how to program, and could do so
as part of a team, while also having expertise in security that
they could draw on if needed.

It appeared to us that developers prefer to trust a person
inside their team rather than an outsider. Moreover, our field
notes showed that a security person inside the developer team
can provide more in-depth knowledge than outside resources
such as pen-testing reports, internet, and so on. For example,
after the XSS got fixed on the AUS, when developers faced
the HTML injection they said: “Is this HTML Injection going
to be easy to fix? It should be very easy to fix,” and without

asking the researchers to provide the solution for them, they
fixed the issue.

5.4.3 Thinking as an Attacker, Thinking as a Developer

It has almost become a platitude in the security field that one
must “think as an attacker.” Applying this to software devel-
opment, the developers can put themselves in the attackers’
shoes and understand how software may be misused. It is an
interesting question as to how much developers need to think
as an attacker. These days, understanding the mechanisms
of all types of cyber attacks can be overwhelming even to a
security expert. Our data implied that the developers and the
company were aware of some of those threats that they may
face, but just knowing them was not enough. The problem is
not necessarily about the lack of understanding the attackers;
it is more about not being able to implement security features
correctly into software, which unfortunately requires some
non-trivial amount of security knowledge. Is it realistic to
expect all software developers to become security experts?
How much time should developers spend on thinking about
how their code may be attacked, among all the other com-
peting demands they face? Security professionals can help
bridge this gap by starting to think like developers, just like
how we ask developers to think like attackers. Security pro-
fessionals need to better understand how developers have to
negotiate many competing interests, not just a sole focus on
security. This could help in providing security knowledge
and information at the right level of abstraction that can be
easily integrated into the software development process. The
co-creation model we used as part of this research allowed the
security researchers to think like a developer, and to create
some positive impacts in the software development process.

6 Discussion

Our ethnographic study found that software security or lack
thereof emerges from a network of technologies and humans,
rather than happening solely because of deficits in the soft-
ware and/or in developers’ knowledge or efforts. The people
in this company were trained professionals acting in good
faith to create successful products. They faced dilemmas that
can be common in the software industry and aimed to resolve
them in ways that produced a viable product, established good
relationships with customers, maintained profitability, and en-
hanced usability and security. Security issues were not directly
attributable to deficits in knowledge, but rather both emerged
and could be resolved in terms of the dynamics that shaped
how developers dealt with both technical and human demands
and balanced their primary aim to develop successful features
for the software with their understanding that security is an
important part of software integrity and functioning. The co-
creation model emerged by attending to these dynamics in the
workplace, and responding to what worked and did not work
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to address specific vulnerabilities during the daily work of
development. This co-creation model could form an integral
part of a workable solution to improve software security. In
fact, some success in applying secure development life cycle
(SDL) in industry echoes our findings [28]. Whether the co-
creation model could work under financial realities, and what
other ingredients need to be there to form a working solution,
remains an intriguing question for future research.

7 Related Work

Assal and Chiasson [1, 2] utilized interviews and surveys to
explore the interplay between developers and software se-
curity processes. Their research found that developers were
motivated to develop secure code, but were often hindered by
a mismanaged organizational process. The authors advocated
looking beyond developers and examining broader organiza-
tional factors that may impact the security of the developed
software. Our work is one such attempt, utilizing an extensive
ethnographic study in a software company. Many of our find-
ings confirmed the analysis results from Assal and Chiasson’s
work. Our work also revealed some deeper insights into the
reason of software (in)security, as well as a co-creation model
that can help address them.

Ruef et al. [3] and Votipka, et al. [4] conducted a series of
studies based on data collected from the Build It, Break It,
Fix It (BIBIFI) contests. A number of patterns of developer
mistakes leading to vulnerabilities were analyzed. Our work
examined the software development process in a real company.
Our in-depth ethnographic study is complementary to the
analysis based on large-scale competition data. One possible
cross-over between the two types of studies is that one can
use the insights from one to drive the analysis in the other.
For example, an observed real-world phenomenon that has
significant security impact could be replicated in the BIBIFI
contest to further examine a hypothesis on a much larger and
more diverse population.

Oorschot and Wurster [5] posited that developers have dif-
ferent skills which often do not include security and suggest
that the focus should be on those who design APIs, because
it is unrealistic to expect all developers be taught sufficient
security. We raise a similar question in our paper from our
ethnographic data, regarding how much security knowledge
developers can realistically master, and whether a co-creation
model where security experts and developers closely collabo-
rate would be a more effective approach.

Green and Smith [6] discussed that developers are not the
problem for insecure code. The focus should be on creating
more developer-friendly and developer-centric approaches
and supporting them when they are dealing with the secu-
rity tasks. Our ethnographic data supports this conclusion.
Moreover, our fieldwork resulted in a co-creation model that
could be part of a solution to provide the needed support to
developers for writing more secure code.

In addition to the works mentioned above, the research
community has explored this area through a number of an-
gles. Oliveira et al. [7] conducted surveys to understand
developers’ attitudes toward security which leads to un-
derstanding that APIs and tools can be improved signif-
icantly. Votipka et al. [8] performed semi-structured inter-
views to compare how hackers and testers find vulnera-
bilities. Acar et al. [9] studied whether different documen-
tation resources influence the security of programmers’
code. Naiakshina et al. [29] conducted a qualitative study
with 20 computer science students and investigated how
and why they failed with regards to secure password stor-
age. Gorski et al. [30] designed a controlled online experi-
ment with 53 participants to study the effectiveness of API-
integrated security advice. Acar et al. [10] conducted an on-
line study and evaluated five cryptographic APIs with GitHub
Python developers about the usability of the crypto APIs.
There has also been research that studied and characterized
different aspects of software bugs [31–33]. These studies fo-
cused on the quality of bug reports and found that important
information was often missing in bug reports which made it
harder to reproduce and fix them.

To the best of our knowledge, our work is the first in using
participant observation and long-term ethnography to study
secure software development in a real company. It allowed
us to observe and reflect upon all contextual factors that have
an impact on secure development processes in a real com-
pany. Our data and findings serve to complement the efforts
discussed above, and often times reveal deep insights not
obtainable through other approaches.

Going beyond secure software development, research into
other aspects of usable security has also revealed the impor-
tance of incorporating broader stake holders’ perspectives
in thinking about security solutions [34, 35]. Haney et al.
studied the role of cybersecurity advocates within organiza-
tions [36–39]. Much of the findings in that line of research
echoes ours, in particular the importance of co-creating secu-
rity solutions with relevant stake holders.

8 Conclusion

This research shows how security intersects with software de-
velopment on the ground, based on two embedded researchers
with one and half years’ data. There remains a considerable
gap between security and developers. Our research shows
that security professionals can better bridge the gap by un-
derstanding how (in)security emerges from the interacting
technological and human factors in the development process.
Our ethnographic study provided a way to understand this
complicated phenomenon, both by better understanding the
competing demands under which developers work, and by
demonstrating how security can successfully be integrated
into software development through a co-creation model.
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Appendix: Coding

Coding – including the development of specific codes and of
a codebook – proceeded in an iterative fashion. Weekly meet-
ings facilitated the discussion of emerging research themes
and specific examples. Codes emerged from these discussions,
where the researchers built consensus on specific analyses.
The researchers relied on a general inductive approach [16],
as well as techniques derived from grounded theory and re-
lated approaches for doing qualitative analysis [17]. Overall,
the development of codes initially focused on the Silently
Allow example, then on emerging results from penetration
testing, the development of a specific coding system for each
researcher for their field notes, and a final collaborative phase
to find commonalities in codes for both the specific examples
and overall corpus of field notes.

Initial Coding of Silently Allow

The coding for Silently Allow grew from weekly meetings and
initially involved using flash cards to organize information.
These flashcards then became organized into different types
of Silently Allow, which were written up and shared with the
research group for further input. Here are the written notes on
the first two categories:

Type 1

Device allowed network access. Device not authenticated
but needs network access to function. Silently Allow an “inter-
nal state” that is used to get devices onto customers’ network.

This is the original “Silently Allow” (SA)

In this case, not a problem with the actual code. They
programmed the code to do this. Some other SAs are because
of problems with the code itself.

*Need vignette – use field notes and participant observation
to describe the situation.

Potential category: IoT devices
Initial problem: Customer

Type 2

Saml – authorization protocol, a way to give access to the
network. This is a protocol problem, because hadn’t imple-
mented the necessary checks

This is an issue with users who input credentials and/or
third party authentication server.

If user tried to use Saml, went into SA automatically. And
thus gets network access.

This problem doesn’t affect all users; affects users who are
set up with Saml authentication. Users had a single login;
with SA, once clicked login, would be able to login, no mat-

ter what. Didn’t implement security checks. Whatever result,
grant access.

Potential category: Authentication
Initial problem: Internal/program

Full Set of Codes

Subsequent research focused on developing a full set of codes
by each of the student researchers. Because the two embedded
researchers often worked on different projects and at different
times, each wrote their own field notes and then subsequently
engaged in coding of their own notes. This process permitted
inductive analysis from their own data, which could then be
shared in research meetings to produce consensus. Below are
the sets of codes developed by the two embedded researchers:

Codes Developed by Researcher One

– Ad-hoc-development
– Customer-driven-development
– Debugging-infrastructure-vs-security
– Developers-not-trained-in-security
– Difficult-to-fix
– Inconsistent-narratives
– Ineffective-peer-reviews
– Insecure-defaults
– Insecurity-to-avoid-breaking-implementations
– Lack-of-documentation
– Lack-of-security-audits
– Lack-of-security-awareness
– Learn-by-doing
– Legacy-code
– Limited-testing-practices
– Misconfiguration
– Non-urgent-issues
– Outdated-libraries
– Positive-bias
– Rapid-prototyping
– Reactive-security
– Revenue-streams
– Security-vulnerabilities-documented-as-bugs
– Selling-unimplemented-features
– Social-frictions
– Technically-challenging-problems
– Time-spent-debugging
– Time-to-market-vs-security
– Trivial-tests
– Underestimating-effort
– Unmanageable-code
– Urgencies
– Usability-over-security
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Codes Developed by Researcher Two

– Caring-about-subject
– Changing-attitude
– Development-process
– Documents-not-updating-frequently
– Fix-first-update-later
– Joking-about-intern-work
– Knowing-bug-do-nothing
– Lack-of-knowledge
– Learning-process-with-company
– Looking-for-new-idea
– New-idea-vs-tasks
– Not-caring-about-subject
– Not-trusting-other-developer-or-intern
– Performance-reaction
– Protective-about-subject
– Say-something-do-something-else
– Security-vs-performance
– Security-vulnerabilities-blocked
– Security-vulnerabilities-concern
– Security-vulnerabilities-denying

– Security-vulnerabilities-execution
– Security-vulnerabilities-fixing
– Security-vulnerabilities-interested
– Security-vulnerabilities-process
– Security-vulnerabilities-reaction
– Security-vulnerabilities-thinking
– Security-vulnerabilities-upgrading

Final Collaborative Phase

In the final collaborative phase, researchers often worked on
a whiteboard to find the overlap between different types of
data, specific examples, and inductive insights. For example,
“co-creation” emerged as an overarching conclusion that came
out of working through the data to find commonalities in both
field notes and in researcher experience during participant
observation. Reviewing similarities, via the coding and then
the notes, also led to data-driven conclusions about what was
successful and what proved to be bottlenecks or limitations
in cybersecurity during the months of embedded research.
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