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ABSTRACT Software vulnerabilities are the major cause of cyber security prob-
lems. The National Vulnerability Database (NVD) is a public data source that
maintains standardized information about reported software vulnerabilities. Since its
inception in 1997, NVD has published information about more than 43,000 soft-
ware vulnerabilities affecting more than 17,000 software applications. This infor-
mation is potentially valuable in understanding trends and patterns in software
vulnerabilities so that one can better manage the security of computer systems that
are pestered by the ubiquitous software security flaws. In particular, one would like
to be able to predict the likelihood that a piece of software contains a yet-to-be-dis-
covered vulnerability, which must be taken into account in security management
due to the increasing trend in zero-day attacks. We conducted an empirical study on
applying data-mining techniques on NVD data with the objective of predicting the
time to next vulnerability for a given software application. We experimented with
various features constructed using the information available in NVD and applied
various machine learning algorithms to examine the predictive power of the data.
Our results show that the data in NVD generally have poor prediction capability,
with the exception of a few vendors and software applications. We suggest possible
reasons for why the NVD data have not produced a reasonable prediction model for
time to next vulnerability with our current approach, and suggest alternative ways in
which the data in NVD can be used for the purpose of risk estimation.
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1. INTRODUCTION
More and more vulnerabilities are being discovered every day (see Figure 1).
Currently, evaluation for known vulnerabilities is becoming more and more
mature. Figure 2 shows our current framework for known vulnerabilities evalu-
ation (Xinming et al., 2005). However, evaluation for unknown vulnerabilities
(a.k.a. zero-day vulnerabilities) should not be ignored because more and more
cyber-attacks come from these unknown security holes and last a long period of
time (e.g., in 2010 Microsoft confirmed a vulnerability in Internet Explorer (IE),
which affected some versions that were released in 2001). Therefore, in order
to have more accurate results on network security evaluation, we must consider
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FIGURE 1 The trend of vulnerability numbers.

FIGURE 2 Enterprise risk assessment framework.

the effect from zero-day vulnerabilities. National
Vulnerability Database (NVD) is a well-known database
for vulnerability information, which could be a useful
source for estimating zero-day vulnerabilities through
data-mining technique. Time to next vulnerability is the
target attribute of our experiments, and we believe we can
use time to next vulnerability (TTNV) to quantify the
risk-level of software. This is because the shorter time to
see a software’s next vulnerability, the higher vulnerability

density it has, which implies higher risks. Also, a couple of
related works have been done. Ingols et al. (2009) pointed
out the importance of estimating the risk-level of zero-
day vulnerability. McQueen et al. (2009) did experiments
on estimating the number of zero-day vulnerabilities on
each given day. Alhazmi and Malaiya (2006) points out
the definition of TTNV which inspired us of the predicted
attribute. Ozment (2007) did much work on analyzing
NVD and pointed out several limitations of this database,
such as the released date is not accurate enough, the data
lack of consistency, etc. A short version of this work has
been published in Zhang et al. (2011). Zhang et al. by
proposing how to use the risk prediction model under a
bigger picture (along with other risk assessment tools such
as attack graph). Other than that, more completed exper-
iments have been conducted in this paper. The goal is
to take zero day vulnerabilities into consideration while
evaluating software risks as shown in Figure 3.

2. DATA SOURCE – NATIONAL
VULNERABILITY DATABASE

NVD is a collection of data. The tuples included in it
always looks like <D, CPE, CVSS>.

• D is a set of data including published time, sum-
mary of the vulnerability and external link about each
vulnerability.
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FIGURE 3 Our prediction model.

• CPE (Buttner & Ziring, 2009) stands for Common
Platform Enumeration, which will be introduced in 2.1.

• CVSS (Mell, Scarfone, & Romanosky, 2007) represents
Common Vulnerability Scoring System, which will be
described later as well.

2.1. CPE (Common Platform
Enumeration)

• An open framework for communicating the charac-
teristics and impacts of information technology (IT)
vulnerabilities.
A CPE can provide us with information of a software, it
may include version, edition, language, etc.

• Example (in primitive format).
cpe :/a:acme:product:1.0:update2:pro:en-us
Professional edition of the “Acme Product 1.0 Update
2 English.”

2.2. Common Vulnerability Scoring
System

CVSS is a vulnerability scoring system designed to
provide an open and standardized method for rating IT
vulnerabilities. CVSS helps organizations prioritize and
coordinate a joint response to security vulnerabilities by
communicating the base, temporal, and environmental
properties of a vulnerability.

• Metrics Vector
• Access Complexity indicates the difficult level of

the attack required to exploit the vulnerability once
an attacker has gained access to the target system.

It includes the following three levels in CVSS: H: High
M: Medium L: Low

• Authentication indicates whether an attacker must
authenticate to a target in order to exploit a vulner-
ability. It includes the following two levels in CVSS:
R: Authentication Required NR: Authentication Not
Required

• Confidentiality, Integrity and Availability are three loss
types of attacks. Confidentiality lost means information
leaked to other people who are not supposed to know
it. Integrity lost means the data was modified during
transmitting. Availability lost means the server or host
received too many requests that they couldn’t response
any of them in time. All of the three lost types have
three following levels in CVSS: N: None P: Partial C:
Complete

• CVSS Score
Calculated based on above vector. It indicates the sever-
ity of a vulnerability.

2.3. Six Vendors with most NVD
Instances

There are many vendors in NVD, with six of them
obvious in terms of the instances number (Figure 4):

• Linux: 56925 instances
• Sun: 24726 instances
• Cisco: 20120 instances
• Mozilla: 19965 instances
• Microsoft: 16703 instances
• Apple: 14809 instances

They ranked really high (all within top 8) in terms of
vulnerabilities number.

The reason we chose the Six Most Vulnerable/Popular
(by number of instances) vendors is because (see Figure 5):

FIGURE 4 Vendors’ ranking by number of instances.
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FIGURE 5 Vendors’ ranking by number of vulnerabilities.

• Huge size of nominal types (vendors and software) will
result in a scalability issue. If we try to build one model
for all vendors, then there are too many possibilities
(10,411) in vendor. This will run for too long to con-
struct our models. Besides, many of smaller vendors
have too few instances, which is not enough for our
data-mining work.

• Top six take up 43.4% of all instances. The six vendors
will take up nearly half of all instances. (Remember, we
have 10,411 vendors totally.)

• The seventh vendor (in terms of instances number) is
much less than the sixth. The next vendor has fewer
instances, so we did not go further than the top six
vendors.

We did vendor-based experiments on each vendor
because vendors are independent for our approach. It is
hard to find relations between vulnerabilities belonging to
different vendors. So it will make sense if we build models
for each vendor’s instances.

Among the aforementioned six vendors, We put most
of our effort on the most two vulnerable vendors—Linux
and Microsoft (number one in instances number and
vulnerabilities number). We also investigated Google, but
the time line is an essential limitation for our experiments
(most of chrome’s instances came up between April and
May 2010. Chrome has the largest number of instances
among all applications of Google).

3. OUR APPROACH
3.1. Predicted Attribute-Time to Next

Vulnerability
We tried to estimate the risk-level comes from zero-day

vulnerabilities through data-mining techniques. Therefore,
we would like some quantitative output. It could mean
“the potential risk level of a given software.” Also, because

time is a quantitative indicator, we chose to predict
TTNV (time to next vulnerability) as our predicted fea-
ture. Predictive attributes are time, versiondiff, software
name, and CVSS. All of them are derived or extracted from
NVD.

3.2. Data Preprocessing
• NVD data training/Testing dataset: For Linux, we chose

to start from 2005 since before that the data looks
unstable (see Figure 1).

• For some of later coming software-based models con-
struction, since we have limited number of instances, we
always use a ratio that training data to testing data is 2
(the data is split based on published time. Earlier data
are for training and later data is for testing).

• Remove obvious errors in NVD (e.g.,
cpe:/o:linux:linux_kernel:390).

• Preprocessing for predictive features, including:
• Published Date Time → Month
• Published Date Time → Day
• Two adjacent vulnerabilities CPE diff (vl,v2) →

Versiondiff
• CPE Specification → Software Name
• Adjacent different Published Date Time → TTPV

(Time to Previous Vulnerability)
• Adjacent different Published Date Time → TTNV

3.3. Feature Construction and
Transformation

Feature construction is of vital importance for all data-
mining works. We analyzed the source data and realized
time and version are two useful features. These two features
need to be transformed to provide the expected predic-
tion behavior. We did a number of experiments based on
different combinations of time and version schemas.

3.3.1. Time

We tried two forms of time. One is epoch time, the
other is using month and day separately without year.
The reason we adopted the second format in the later
experiments is because we thought year is not a useful
information since year will not be repeated. Even so, we
did a couple of experiments comparing the two different
schemas, and the latter schema showed better results on
most of the experiments.
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3.3.2. Version

Intuitively, version is also a useful information from
NVD. We tried to calculate the difference between two
adjacent instances’ versions to get the versiondiff as a
predictive feature. The rational of doing this is because we
want to use the trend of the version with time to estimate
the future situation. Two of the versiondiff schemas
are introduced in our approach. First is calculating the
versiondiff based on version counters (purely calculate the
difference of versions based on their ranks). The second
schema is calculating the versiondiff by radix (assigning
higher weight to relative major version while doing the
diff calculation).

However, we realized that versiondiff did not work well
on our case because all of the new vulnerabilities affecting
current version will also affect previous versions. Therefore,
most values of versiondiff are zero (since if the version has
already in existence, then the diff of versions must be zero).
In order to mitigate the limitation, we created another pre-
dictive feature for our later experiments. The new feature
is occurrence number of certain version of each software.
More details will be introduced in Section 5.

3.4. Prediction Model
We collected all useful configuration information of

the target machine. Then based on the software it has
installed, we can judge how potential risk could come
from these applications, combined with the evaluation of
known vulnerabilities. Eventually it can output a quan-
titative value showing the risk-level of this system (e.g.,
Mean Time to Next Vulnerability (MTTNV) along with
Common Vulnerability Scoring System (CVSS) Metrics
(see Figure 6).

FIGURE 6 Flow chart.

• Predictive data
Month, Day, Versiondiff, TTPV (Time to Previous
Vulnerability), CVSS Metrics (indicate the properties of
the predicted vulnerabilities).

• Predicted data
• TTNV (Time to Next Vulnerability) implies the risk

level of zero-day vulnerabilities.

3.5. Machine Learning Function Type
We used either classification or regression functions for

our prediction depending on how we define the predicted
feature. The TTNV could be a number representing
how many days we can wait until the occurrence of
next vulnerability. Or it could be binned, and each bin
stands for values within a range. For the former case,
we used regression functions; for the latter case, we used
classification functions.

3.5.1. Regression

There are several regression functions: Linear regression,
Least median square, multilayer perceptron, radial basis
function (RBF) network, sequential minimal optimization
(SMO) regression, and Gaussian processes.

3.5.2. Classification

There are also several classification functions: Logistic,
least median square, multilayer perceptron, RBF network,
SMO, and simple logistic.

4. EXPERIMENTAL RESULTS
4.1. Definitions

Some academic terms will be used in the following
description. (We actually only used correlation coefficient
as the indicator of fitness because it is the most straight-
forward. Other indicators are also included in a standard
Waikato Environment for Knowledge Analysis [WEKA;
Bouckaert et al., 2010] output). They are used to explain
the accuracy of the model. In order to make it easier to
understand, we put some of their definitions here:

Mean Absolute Error

Mean absolute error (MAE) is a quantity used to mea-
sure how close forecasts or predictions are to the eventual
outcomes. The MAE is given by:
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MAE = 1

n

n∑
i=1

∣∣fi − yi
∣∣ = 1

n

n∑
i=1

|ei|

Root Mean Squared Error

The mean square error (MSE) of an estimator is one of
many ways to quantify the difference between an estimator
and the true value of the quantity being estimated.

RMSE (θ1, θ2) = √
MSE (θ1, θ2) =

√
E

(
(θ1 − θ2)

2)

=

√√√√√
n∑

i=1

(
x1,i − x2,i

)2

n

Relative Absolute Error

Relative absolute error (RAS) is defined as the summa-
tion of the difference between predictive value and given
value for the sample case � to that divide it by the summa-
tion of the difference between the given value and average
of the given value (for information on RAS, see http://
www.tutorvista.com/math/relative-absolute-error).

Ei =

n∑
i=1

∣∣P(ij) − Tj
∣∣

n∑
i=1

∣∣Tj − T̄
∣∣

Root Relative Squared Error

The root relative squared error (RRSE) is relative to
what it would have been if a simple predictor had been
used. More specifically, this simple predictor is just the
average of the actual values. Thus, the relative squared error
takes the total squared error and normalizes it by dividing
by the total squared error of the simple predictor. By taking
the square root of the relative squared error, one reduces
the error to the same dimensions as the quantity being
predicted (see http://www.gepsoft.com).

Ei =

√√√√√√√

n∑
i=1

(
P(ij) − Tj

)2

n∑
i=1

(
Tj − T̄

)2

Correlation Coefficient

The correlation coefficient—a concept from statistics—
is a measure of how well trends in the predicted values
follow trends in past actual values. It is a measure of how

FIGURE 7 Different similarity levels from different correlation
coefficient.

well the predicted values from a forecast model “fit” with
the real-life data.

The correlation coefficient is a number between 0 and 1.
If there is no relationship between the predicted values and
the actual values, the correlation coefficient is 0 or very low
(the predicted values are no better than random numbers).
As the strength of the relationship between the predicted
values and actual values increases so does the correlation
coefficient. A perfect fit gives a coefficient of 1.0. Thus the
higher the correlation coefficient the better. Figure 7 can
demonstrate the correlation coefficient (“What is,” http://
www.forecasts.org).

4.2. Experiments
For all of our experiments, we did them on a clus-

ter of computing nodes from Beocat, which is a private
cloud within Kansas State University Computing and
Information Science department (see https://www.cis.ksu.
edu/beocat/about). Because most of the experiments will
take a lot of time on a single host, for all of the experi-
ments we use single core and 4G RAM. Weka (Waikato
Environment for Knowledge Analysis) (Bouckhaert et al.,
2010) is a data-mining suite for all experiments.

We did a couple rounds of experiments including using
different versiondiff schemas, different time schemas,
including CVSS metrics or not. Overall, for different
models, different feature combinations will output opti-
mal results (having highest correlation coefficient value).
Hence, we believe it is hard to build a single model for
all of the software. Also, if we build a single model for all
of the software, then it will turn out a scalability issue.
It won’t finish within at least one week. Because we need
to have both vendor name and software name as predictive
features, and both of them have a lot of possibilities,
which means we need to have two large nominal types as
predictive features, which will too long time to be finished.

Predicting Cyber Risks 199

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 0

7:
42

 2
6 

Ja
nu

ar
y 

20
16

 

http://www.gepsoft.com


In order to resolve this scalability issue, we tried to
build a model for top six vendors (as mentioned), but the
problem still could not be resolved. It still needs more
than four days; (it could not be much longer than four
days; we set up a time limit for our experiment, and it
will terminate within 100 hours no matter it is finished
or not) to be finished. Therefore, we tried to build models
for each vendor. We believe it is hard to find some relation
between different vendors. And since there are so many
vendors there, we could not do all of the experiments
on each of them. We put more effort on several vendors
(e.g., Linux, Microsoft, Mozilla and Google) to build our
models. For some (Linux, Microsoft and Mozilla), we tried
to build software-based models as well. For the remaining
vendors (Apple, Sun and Cisco), we only did vendor-based
experiments.

4.3. Results
We tried to build vendor-based models initially, then

models for single software. Most of these single software
are web browsers since they are more vulnerable than other
applications, so they have enough data for our experiments.

Linux. We tried to use two versiondiff schemas
including counter-based versiondiff and radix-based
versiondiff to compare which one is more appropriate for
our model construction. Also, we compare two different
time schemas (epoch time and using month and day
separately). Besides, we binned the class feature (TTNV)
as a comparison group since we noticed there are clusters
in the distribution of TTNV.

Counter versiondiff. For this versiondiff schema, we did
not differentiate between minor versions and major ver-
sions. For example, if one software has three versions: 1.1,
1.2, 2.0, then the 1.1, 1.2, and 2.0 will be assigned coun-
ters 1, 2, 3 based on the rank of their values. Therefore,
the versiondiff between 1.1 and 1.2 is the same as the
versiondiff between 1.2 and 2.0.

Epoch time. Epoch time is very popularly used time
schema by many people within computer realm. It rep-
resents how many seconds elapsed since the midnight of
1970-1-1, which is the year of Linux’s birth. We did some
experiments by using this time schema. But the results are
not very ideal (all correlation coefficients are below 0.5).
Table 1 shows the comparing results between epoch time
and month day schema.

Month and day. We noticed that year is useless for our
prediction work because year will not show again in the
future. We tried another time schema by only including

TABLE 1 Correlation Coefficient for Linux Vulnerabilities
Using Two Formats of Time

epoch time Month and day

Functions Train Test Train Test

Linear Regression 0.3104 0.1741 0.6167 −0.0242
Least Mean

Square
0.1002 0.1154 0.1718 0.1768

Multilayer
Perceptron

0.2943 0.1995 0.584 −0.015

RBF 0.2428 0 0.1347 0.181
SMOReg 0.2991 0.2186 0.2838 0.0347
Gaussian

Processes
0.3768 −0.0201 0.8168 0.0791

day and month. The results from this schema are a little
bit better (correlation coefficient is higher. Specifically, half
of the training correlation coefficient is higher than 0.5 for
month and day set but none of such values is higher
than 0.5 for the epoch time set). Then for all of the later
experiments we only used this schema.

Radix-based versiondiff. We realized the difference
between major versions are different from the difference
between minor versions. Since a change on major versions
suggest a higher degree of difference on the functional-
ity of software. So while calculating versiondiff, we need
to assign a higher weight to relatively major version and
lower weight to relatively minor version. For example, if a
software has three versions 1.0, 1.1, 2.0, then we assign a
weight of 10 to the major version and a weight of 1 to the
minor version. Then the versiondiff between 1.1 and 1.0 is
1, while the versiondiff between 2.0 and 1.1 will be dif-
ferent from the previous one. It’ll be9 (2 × 10 + 0 × 1 −
1 × 10 − 1 × 1). The results from this schema is a little
bit better. However, since the most versiondiff values are
zero, we have to abandon this schema eventually. Table 2
shows the comparing results of the two different versiondiff
schemas.

Binning. Since we found that the class feature (TTNV)
of Linux has obvious clusters. We then divided the class
feature into two categories. One is more than 10 days
the other is no more than 10 days. After this, the results
became better in terms of the corrected classified rates.
However, the false positive rates are still high (above 0.7).
We also tried to use Gaussian (RBF) kernel for SMO func-
tion, it showed better results in terms of the correctly
classified rate. However, it still has a false positive rate
about 0.74, which is far from acceptable. Table 3 shows
the correctly classified rates for these experiments.

Besides the binned on TTNV, we did binning on ver-
sions of Linux kernel. We round all of the sub-versions
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D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

Fl
or

id
a]

 a
t 0

7:
42

 2
6 

Ja
nu

ar
y 

20
16

 



TABLE 2 Correlation Coefficient for Linux Vulnerabilities
Using Two Formats of Versiondiff

Version Counter Radix based

Functions Train Test Train Test

Linear Regression 0.6167 −0.0242 0.6113 0.0414
Least Mean

Square
0.1718 0.1768 0.4977 −0.0223

Multilayer
Perceptron

0.584 −0.015 0.6162 0.1922

RBF 0.1347 0.181 0.23 0.0394
SMOReg 0.2838 0.0347 0.2861 0.034
Gaussian

Processes
0.8168 0.0791 0.6341 0.1435

TABLE 3 Correctly Classified Rate for Linux Vulnerabilities
Using Binned TTNV

Functions Correctly classified

Train Test

Simple Logistic 97.9304% 59.6769%
Logistic Regression 98.7675% 59.7943%
Multilayer Perceptron 97.7754% 59.6456%
RBF 92.9075% 61.0068%
SMO 97.9381% 66.9757%
SMO (RBF kernel) 98.1009% 78.8117%

to its third significant major version, for example,
Bin (2.6.3.1) = 2.6.3. The reason we binned the first
three most significant versions is because more than half
instances (31834/56925) have a version longer than 3.
And only 1% (665/56925) instances versions are longer
than 4. Also, the difference on the third subversion will be
regarded as a huge dissimilarity for Linux kernel. We didn’t
do the same experiments on Microsoft because the versions
of Microsoft products are naturally discrete (all of them
have versions less than 20). Table 4 indicates the compar-
isons between binned versions schema or not. The results
are not good enough since many of versiondiffs are zero.

CVSS metrics. For all of the experiments, we created
another comparing group by adding CVSS metrics as
predictive features. However, we could not see a lot of dif-
ferences by adding CVSS metrics or not. Hence, for Linux
kernel, CVSS metrics cannot tell us much.

Adobe. Since we have already realized the limitation of
versiondiff schema, for Adobe instances we use occurrence
number of certain version of a software instead of using
versiondiff. Also, we used month and day format instead
of epoch time. The results for testing data are not good

TABLE 4 Correlation Coefficient for Linux Vulnerabilities
Using Binned Versions or not

Non-bin versions Binned versions

Functions Train Test Train Test

Linear Regression 0.6113 0.0414 0.6111 0.0471
Least Mean

Square
0.4977 −0.0223 0.5149 0.0103

Multilayer
Perceptron

0.6162 0.1922 0.615 0.0334

RBF 0.23 0.0394 0.0077 −0.0063
SMOReg 0.2861 0.034 0.285 0.0301
Gaussian

Processes
0.6341 0.1435 0.6204 0.1369

TABLE 5 Correlation Coefficient for Adobe Vulnerabilities
Using CVSS Metrics or not

Include cvss Without CVSS

Functions Train Test Train Test

Linear Regression 0.7932 0.0625 0.7031 −0.1058
Least Mean

Square
0.6097 −0.351 0.6124 −0.3063

Multilayer
Perceptron

0.9268 0.174 0.8759 −0.0469

RBF 0.1817 0.3845 0.1165 0.2233
SMOReg 0.7178 0.1299 0.6191 0.0979
Gaussian

Processes
0.9111 0.0322 0.8563 −0.1317

on adobe. All of the correlation coefficient values are low
(less than 0.4). Since there are not any obvious clusters
in the TTNV distribution, we did not bin the class fea-
ture, which means we only tried regression functions. Also,
we noticed two applications of Adobe, Acrobat Reader
and Flash Player, are much more vulnerable than others.
We wanted to build models for these two software applica-
tions, but each of them has a number of instances less than
2,000, which is far from enough for our task. Table 5 indi-
cates the difference while adding CVSS metrics to Adobe
instances.

Microsoft. We analyzed the instances and found that
more than half of the instances did not have version infor-
mation. And for most of these cases, the software used was
Windows. Besides Windows, more than 70% of instances
have version information, so we used two different occur-
rence features for these different kinds of instances. For
Windows instances, we only used the occurrence of each
software as a predictive feature. For the rest of the instances,
we used the occurrence of each version of this software
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TABLE 6 Correlation Coefficient for Win and Non-Win
Instances

Win Instances
Non-win
Instances

Functions Train Test Train Test

Linear Regression 0.4609 0.1535 0.5561 0.0323
Least Mean

Square
0.227 0.3041 0.2396 0.1706

Multilayer
Perceptron

0.7473 0.0535 0.5866 0.0965

RBF 0.1644 0.1794 0.1302 −0.2028
SMOReg 0.378 0.0998 0.4013 −0.0467
Gaussian

Processes
0.7032 −0.0344 0.7313 −0.0567

as a predictive feature. Also, there is no obvious clusters
for either Windows or non-Windows instances TTNV, so
we just tried regression functions here. Again, for time
schema we used month and day separately. We did not
use versiondiff as a predictive feature since we realized
most of the versiondiff’s value are 0 and because all of
the vulnerabilities affecting current versions will affect all
previous versions as well. This may not be the true case,
but from our observation, many vendors (e.g., Microsoft
or Adobe) claim so. For the same reason, we abandoned
versiondiff schema for the rest of experiments. Instead,
we used the aforementioned feature (occurrence of certain
software or occurrence of certain version of each software),
but the results were not very good (see Table 6). All of
the correlation coefficients were less than 0.4. We further
tried to build models for non-Windows individual appli-
cations. For example, we extracted IE instances and tried
to build models for it. When CVSS metrics were included,
the results (correlation coefficient is about 0.7) looked bet-
ter than without CVSS metrics (correlation coefficient is
about 0.3). We also tried to do experiments on office.
However, there were only 300 instances for office, and the
after Office-related instances were all about individual soft-
ware such as Word, Powerpoint, Excel and Access. Each
had less than 300 instances. So we gave up building models
for Microsoft office. Table 7 shows the difference between
adding CVSS metrics to IE instances and without CVSS
metrics.

Mozilla. We only tried to build models for Firefox.
Then results were relatively good( 0.7) whether or not
CVSS metrics were included. However, one concern was
that the number of instances were small (fewer than 5000).
Table 8 shows the comparing results of firefox including
CVSS metrics or not.

TABLE 7 Correlation Coefficient for IE Vulnerabilities Using
CVSS Metrics or not

Include cvss Without CVSS

Functions Train Test Train Test

Linear Regression 0.8023 0.6717 0.7018 0.3892
Least Mean

Square
0.6054 0.6968 0.4044 0.0473

Multilayer
Perceptron

0.9929 0.6366 0.9518 0.0933

RBF 0.1381 0.0118 0.151 −0.1116
SMOReg 0.7332 0.5876 0.5673 0.4813
Gaussian

Processes
0.9803 0.6048 0.9352 0.0851

TABLE 8 Correctly Classified Rate for Firefox Vulnerabilities
Using CVSS Metrics or Not

Include CVSS Without CVSS

Functions Train Test Train Test

SimpleLogistic 97.5% 71.4% 97.5% 71.4%
Logistic

Regression
97.5% 70% 97.8% 70.5%

Multilayer
Perceptron

99.5% 68.4% 99.4% 68.3%

RBF 94.3% 71.9% 93.9% 67.1%
SMO 97.9% 55.3% 97.4% 55.3%

Google (Chrome). We also realized that Google
has become a vulnerable vendor (in terms of instances
number) in the last three months (March-May 2010).
We found most Google instances originate from chrome.
We thought of building models for Google Chrome ini-
tially. However, we realized more than half of the instances
of Chrome appeared within two months (April–May
2010). Therefore, we think it will be hard to predict
something within such a short timeline.

Apple, Sun and Cisco. We merely tried to build
vendor-based models for these three manufacturers for
the time reason. The results were not very good, similar
to the results of the Adobe experiments. Table 9 indi-
cates the results of comparing two different time schemas
with Apple instances. (For scalability reason, Cisco and
Sun instances can only finish Linear Regression experi-
ments and the results are similar to Apple. The rest of the
experiments could not be finished within two days.)

4.4. Parameter Tuning
Based on each group of test, we tuned the paramters?

and g for SVM (support vector machine) on all of the
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TABLE 9 Correlation Coefficient for Apple Vulnerabilities
Using Two Formats of Time

Include CVSS Without CVSS

Functions Train Test Train Test

Linear Regression 0.6952 0.4789 0.763 0.4851
Least Mean

Square
0 0 0 0

Multilayer
Perceptron

0.8027 0.6007 0.9162 0.6994

RBF 0.0255 0.0096 0.0308 0.0718
SMOReg 0.6421 0.501 N/A N/A
Gaussian

Processes
N/A N/A N/A N/A

regression models. We picked serveral values for each
paramter (g is 0, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 5.0 and?
is 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10, 15, 20) and did a brute
force search in order to find out which one could provide us
with the optimal value (in terms of correlation coefficient,
root mean square error (RMSE), and root relative square
error (RRSE)). We picked up the optimal parameters at the
first round of validation. In order to make sure the optimal
parameters really work well, we did a second round test
(the size of the dataset for the validation and test are almost
the same but the test dataset is later than the validation
dataset). Tables 10 and 11 indicate the results in terms of
correlation coefficient, RRSE, and RMSE. Including both
validation and test parts.

4.5. Summary
The experiments outlined in this article indicate that it

is hard to build one prediction model for a single vendor,

since the trend of different software of each vendor could
be quite different. Also, the data we can use are limited.
For example, we could not have version information for
most of Microsoft instances (most of them are Windows
instances). Some results look promising (e.g., the mod-
els we built for Firefox and IE). However, this can also
strengthen our belief that the trends of different software
are far from each other. We used two different predictive
sets to construct the best models for two different software.
Therefore, in order to capture the trends of different pop-
ular applications, we need more accurate or matured data.
Also, if we could build models for similar software, then we
could build several models and each of which could include
a set of popular applications.

5. RELATED WORKS
A number of related works are available, all mentioning

the threat from zero-day vulnerabilities.
Alhazmi and Malaiya (2006) did a number of experi-

ments on building models for predicting the number of
vulnerabilities that will appear in the future. They targeted
operating systems instead of building a whole model for all
of the applications. The Alhazmi-Malaiya Logistic model
looks good. However, it can only estimate vulnerabilities
for operating systems rather than software applications,
which is important for quantitative risk assessment. Also,
the number of vulnerabilities is not enough for quantify-
ing the risk level of software because there are differences
between different vulnerabilities and different software,
which is considered in our experiments.

Ozment (2007) examined the vulnerability discovery
models (pointed out by Alhazmi & Malaiya, 2006) and

TABLE 10 Parameter Tuning for Correlation Coefficient

Parameters Validation Test

Test Group C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 3.0 2.0 75.2347 329.2137% 0.7399 82.2344 187.6% 0.4161
Internet Explorer CVSS 1.0 1.0 8.4737 74.8534% 0.4516 11.6035 92.2% −0.3396
Non-Windows 1.0 0.05 92.3105 101.0356% 0.1897 123.4387 100.7% 0.223
Linux CVSS 15.0 0.1 12.6302 130.8731% 0.1933 45.0535 378.3% 0.2992
Adobe 0.5 0.05 43.007 188.1909% 0.5274 78.2092 178.5% 0.1664
Internet Explorer 7.0 0.05 13.8438 122.2905% 0.2824 14.5263 115.5% −0.0898
Apple Separate 3.0 0.05 73.9528 104.0767% 0.2009 91.1742 116.4% −0.4736
Apple Single 0.5 0.0 493.6879 694.7868% 0 521.228 1401.6% 0
Linux Separate 2.0 0.05 16.2225 188.6665% 0.3105 49.8645 418.7% −0.111
Linux Single 1.0 0.05 11.3774 83.2248% 0.5465 9.4743 79.6% 0.3084
Linux Bin 2.0 0.05 16.2225 188.6665% 0 49.8645 418.7% −0.111
Windows 5 0.05 21.0706 97.4323% 0.1974 72.1904 103.1% 0.1135
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TABLE 11 Parameter Tuning for RMSE and RRSE

Parameters Validation Test

Test Group C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 0.5 0.2 19.4018 84.8989% 0.2083 61.2009 139.6667% 0.5236
Internet Explorer CVSS 2.0 1.0 8.4729 74.8645% 0.4466 11.4604 91.1018% −0.3329
Non-win 0.5 0.1 91.1683 99.7855% 0.188 123.5291 100.7% 0.2117
Linux CVSS 2.0 0.5 7.83 81.1399% 0.1087 19.1453 160.8% 0.3002
Adobe 1.0 0.5 19.5024 85.3392% −0.4387 106.2898 242.5% 0.547
Internet Explorer 0.5 0.3 12.4578 110.0474% 0.2169 13.5771 107.9% −0.1126
Apple Separate 7.0 1.0 70.7617 99.5857% 0.1325 80.2045 102.4% −0.0406
Apple Single 0.5 0.05 75.9574 106.8979% −0.3533 82.649 105.5% −0.4429
Linux Separate 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236
Linux Single 5.0 0.5 10.7041 78.2999% 0.4752 12.3339 103.6% 0.3259
Linux Bin 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236
Windows 5.0 0.05 21.0706 97.4323% 0.1974 72.1904 103% 0.1135

realized there are some limitations making these models
unapplicable. For example, there is not enough infor-
mation included in government-supported vulnerability
databases (e.g., National Vulnerability Database). This
illustrated why our current results are not good enough
from another angle.

Ingols et al. (2009) tried to model network attacks and
countermeasures through an attack graph. They pointed
out the dangers from zero-day attacks and also mentioned
the importance of modeling zero-day attacks. However,
they pointed out this without doing any experiments. But
this inspired us to conduct our data-mining work.

McQueen et al. (2009) realized the importance of
unknown security holes. They tried to build logarithm-
like models, which could tell us the approximate number
of zero-day vulnerabilities on each given day. This num-
ber can somehow tell us the overall risk level from zero-day
vulnerabilities. However, the situation could be different
for different applications, and not every vulnerability has
the same level of risk. We considered these differences in
our experiments.

Nguyen and Tran (2010) and Massacci and Nguyen
(2014) compared several existing vulnerability databases by
what features of vulnerability are included in each. They
mentioned that many important features are not included
in ALL of the database, for example, discovery date, for
which it is hard to find precise value. Even though certain
databases (OSVDB as we realized) claim they include the
features, most of the entries are blank. Source code-related
features also may be missing, since commercialized prod-
ucts are not open source, so these could not be included in
NVD. For their Firefox vulnerability database, the authors
used some textual retrieval technique to take some key

words from CVS commiter’s check-in log and to get several
other features by cross reference through SVE IDs. They
realized by using one or two different data sources for
the same experiment, the results could be quite differ-
ent due to the high degree of inconsistency of the data
available. So they tried to confirm the correctness of their
database by comparing data from different sources. They
used data-mining techniques (based on the database they
built) to priortize the security level of software component
for Firefox.

6. CONCLUSIONS
This research mainly focuses on the prediction of time

to next vulnerability, which is in days. This will poten-
tially provide us with a value associated with unknown
risks. Also, we may apply the prediction model to the
MulVAL attack-graph analyzer (Xinming et al., 2005;
Homer et al., 2013; Huang et al., 2011; Zhang et al.,
2011), which is a quantitative risk assessment framework
based on known vulnerabilities. Ideally the whole work will
provide a comprehensive risk assessment solution along
with other environments like the Cloud (Zhang, 2014;
Zhang, Zhang, & Ou, 2014; DeLoach, Ou, Zhuang, &
Zhang, 2014; Zhang, 2012; Zhuang et al., 2012) and soft-
ware dependency (Zhang et al., 2015). However, until now
we could not find any model that could handle all soft-
ware. Besides, the data source has a number of limitations
(e.g., all later vulnerabilities will affect all previous ver-
sions which makes versiondff unapplicable) that restrict
its use in a data-mining-based approach. Moreover, the
quality of the data is inconsistent. Even though there are
CPEs for most CVE entries, many of the attributes are
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missing. (e.g., Windows instances do not have any version
information). Also, even though some information (e.g.,
version) is given, we could not use it because of the afore-
mentioned reason. So the data left for our data-mining
work are much less than we originally expected. Therefore,
we could not build any accurate model from NVD in its
current form.

7. FUTURE WORK
Through this data-mining work on NVD, we real-

ized there are limitations in the NVD, which limits its
use as an effective source. We believe that the num-
ber of zero-day vulnerability (of each software) could be
another informative indicator for quantifying the risk-level
of zero-day vulnerabilities. This will use the vulnerability
life span (since in order to have the number of current
zero-day vulnerabilities, we need to count the number of
zero-day vulnerabilities between current time point and
another time point when all current vulnerabilities have
been discovered. Since the number of current zero-day
vulnerabilities may not be enough for quantifying the
risk-level of zero-day vulnerabilities, we also need to con-
sider the severity of each vulnerability of each application.
We can design metrics to indicate the severity level of these
vulnerabilities. For example, we can consider calculating
the average CVSS score as the indicator. These possible
future works may be simply done through statistic analysis
without using data-mining techniques.
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