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Abstract—A Building Automation System (BAS) is a com-
plex distributed Cyber-Physical System that controls building
functionalities such as heating, ventilation, and air condition-
ing (HVAC), lighting, access, emergency control, and so on.
There is a growing opportunity and motivation for BAS to be
integrated into enterprise IT networks together with various
new “smart” technologies to improve occupant comfort and
reduce energy consumption. These new technologies coexist with
legacy applications, creating a mixed-criticality environment. In
this environment, as systems are integrated into IT networks,
new attack vectors are introduced. Thus, networked non-critical
applications running on the OS platform may be compromised,
leaving the control systems vulnerable. The industry needs a
reliable computing foundation that can protect and isolate these
endangered critical systems from untrusted applications.

This work presents a novel kernel-based approach to secure
critical applications. Our method uses a security-enhanced, mi-
crokernel architecture to ensure the security and safety properties
of BAS in a potentially hostile cyber environment. We compare
three system design and implementations for a simple BAS
scenario: 1) using the microkernel MINIX 3 enhanced with
mandatory access control for inter-process communication (IPC),
2) using seL4, a formally verified, capability-based microkernel,
and 3) using Linux, a monolithic kernel OS. We show through
experiment that when the non-critical applications are compro-
mised in both MINIX 3 and seL4, the critical processes that
impact the physical world are not affected. Whereas in Linux,
the compromised applications can easily disrupt the physical
processes, jeopardizing the safety properties in the physical
world. This shows that microkernels are a superior platform for
BAS or other similar control environments from a security point
of view, and demonstrates through example how to leverage the
architecture to build a robust and resilient system for BAS.

I. INTRODUCTION

A Building Automation System (BAS) is a network-based
control system that monitors and manages physical security,
fire safety, air conditioning (HVAC), humidity, lighting, etc.,
for modern buildings. As the industry is moving towards
Cyber-Physical Systems (CPS) and the Internet of Things
(IoT), there is a growing motivation to develop new tech-
nologies for BAS to improve occupant comfort and at the
same time reduce energy consumption and operating costs.
Thus, more and more “smart building” devices are entering the
market. These commercial products leverage various sensors
and actuators to better understand the living context, automate

the control environment, and respond to customer needs. The
goal of CPS is to enable more advanced sensing, actuation, and
controls for better energy and operational efficiency. In turn,
the resulting requirements of interconnection and integration
increasingly sophisticates computing and networking within
the BAS, opening new attack surfaces that endanger the safety
of the physical world under that BAS’s control. State-of-the-
art BAS have many networked entities, which were separated
in the past from the IT systems in the environment.

Today’s control network for building automation is outdated.
It is well-known, the security of BACnet, one of the most
popular communication protocols in BAS, is vulnerable to
diverse, common network-based attacks such as denial-of-
service (DoS) attacks, replay attacks, spoofing attacks, etc.
More importantly, BAS devices, such as PLCs, global con-
trollers, and management computers, are themselves poten-
tially vulnerable to attacks. Modern BAS heavily depend on
PLCs for monitoring and controlling building facilities. A
PLC is an embedded real-time computer that connects with
various sensors and actuators; it can be remotely monitored
and programmed through the BAS. PLCs have traditionally
been on isolated internal networks, so developers have focused
on maintaining functionality rather than security. Prior to the
discovery of Stuxnet attack in June 2010 [1], the security of
PLCs received little attention.

Since then numerous recent incidents have been reported
regarding cyber attacks on industrial control systems. For
example, in 2012, ICS-CERT issued an alert that documented
various PLC vulnerabilities, including the possibility of up-
loading unauthenticated configuration changes to the PLC with
arbitrary code [2]. Recent work [3] clearly demonstrated that
the technique required to attack a PLC is no more difficult
than attacking any other computer. In another example, Charlie
Miller [4] demonstrated a remote exploit for advanced ve-
hicles. In 2014, a cyberattack on a German steel mill plant
control system caused physical damage [5]. All of these
demonstrate the possible threat and potential impact of cyber
attacks on comparable systems. What is there to prevent a
similar attack from happening in building automation systems?

BAS hardware components are often expected to stay in
place for a decade or more, and any approach to secure BAS
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Fig. 1: Building Security/Safety Control Framework

must accommodate the long field life of control hardware.
Thus, new building technologies must coexist with legacy
systems. This situation creates a mixed criticality environment.
In this environment, less critical applications often share the
same resources as critical control processes on the same
device. This is problematic because the network functionality
also opens up an additional attack surface. This calls for a
solution that can regulate the communication between critical
applications and non-critical applications.

We believe one promising direction is to transform BAS
microcontrollers into security anchors that protect the critical
control components. Even if part of the overall system is
compromised, the critical functionalities of the controllers
should not be jeopardized. This requires a simultaneous top-
down and bottom-up approach as illustrated in Figure 1. At
the top level, the control environments are decomposed into
components through a modeling approach. From the bottom,
a re-designed computing foundation of the microcontrollers
provides a succinct set of security primitives that support the
diverse set of safety and security properties that are required
by the high-level environment. This framework will enable de-
composing the domain-specific security/safety properties into
the various isolated modules with strongly enforced timing,
spatial, and networking isolations that run on the embedded
controllers. Ultimately, we want to guarantee the critical tasks
a controller must fulfill will never be jeopardized even in a
potentially malicious environment. Through our investigations,
we believe that microkernel-based real-time OSs are a good
approach to build this underlying computing foundation.

In this paper, we document our initial experiment towards
the proposed framework. We implemented a simplified tem-
perature control scenario that is extracted from our case study
of the Biosecurity Research Institute at Kansas State Univer-
sity [6]. We designed and implemented this scenario using two
microkernel-based operating systems: MINIX 3 [7] with our
newly added mandatory access control security mechanism,
and the formally verified seL4 [8]. In the following sections,
we will explain the system and the experiment in detail.

HeaterActuator
Process

TempControl 
Process

TempSensor 
Process

AlarmActuator
Process

WebInterface 
Process

Heater

Alarm

Sensor

heater ON/OFF

alarm ON/OFF
environment info

new setpoint

new sensor data

Fig. 2: Logic Illustration of Temperature Control Scenario

II. REAL SCENARIO

In this section, we present a simplified subset of a building
automation control scheme. We extracted this temperature
control scenario from our case study of the Biosecurity Re-
search Institute at Kansas State University in our previous
work [6]. The simplified temperature control scenario involves
a single controller, one temperature sensor, one heater actuator,
and one alarm actuator. The goal of this controller is to
maintain the room temperature within a predefined range.
The controller should allow an administrator to adjust the
desired room temperature within this range through a web-
based interface. If the controller fails to achieve the desired
temperature within certain time interval(e.g., 5 minutes), the
alarm will be triggered to alert the occupants.

The control scenario contains multiple components that can
be implemented into five processes using a microcontroller.
The logic illustration and control components can be seen in
Figure 2.

• Temperature Control Process is the major control logic
responsible for maintaining the room temperature ac-
cording to the desired temperature setpoint. This process
periodically receives the current room temperature sensor
data from the sensor process. Based on the sensor data,
it sends control commands to the heater driver and to the
alarm driver. The temperature control process also listens
for setpoint updates from web interface.

• Temperature Sensor Process is the temperature sen-
sor driver. This process periodically samples the room
temperature and sends the data to temperature control
process.

• Heater Actuator Process is the heater actuator driver.
This process controls the physical heater actuator. It
listens for commands from temperature control process
and adjusts the actuator accordingly.

• Alarm Actuator Process is the alarm actuator driver.
This process controls the physical alarm actuator. It
listens for the control command from temperature control
process and enables or disables the alarm accordingly.

• Web Interface Process simulates the building automa-
tion management interface. This interface also provides



administrators a way to change the desired room temper-
ature setpoint. Realistically, the control interface might
support other control systems, such as lighting, air-
conditioning, fire alarm, etc.; however, for the sake of
simplicity in our mockup scenario we only consider the
room temperature control system.

In this scenario, we assume the drivers are implemented
correctly without vulnerabilities, and the control logic of
the temperature control process is functionally correct with
intuitive implementation. On the other hand, the web interface
process does not hold any security guarantee, which means it
might be vulnerable to various attacks, such as spoofing, DoS,
and buffer overflows.

If the scenario is implemented on a typical Unix-like system,
an adversary has many available attack options. First, all
the inter-process communication is potentially vulnerable to
spoofing attacks. In most Unix-like systems, inter-process
communication (IPC) is conducted through either message
queues or Unix local sockets, which are all implemented
through the file system. Therefore, the authenticity of the
message is protected through file permissions. This mechanism
conveniently provides a uniform way to manage IPC, and
if configured correctly, it can satisfy basic security require-
ments. However, it cannot prevent attacks with root privilege.
Secondly, a monolithic kernel architecture includes most of
its services, such as process management, virtual memory
management, file system, etc. in the kernel space as a whole.
These monolithic systems have few techniques to restrain
a process with root privilege in those environments. For
example, a process with root privilege can invoke system calls
to kill other processes.

III. SYSTEM OVERVIEW

In order to evaluate the proposed microkernel architecture,
we implemented the temperature control scenario, as shown
in Figure 2, on three different platforms to test the strength of
the proposed secure OS architecture, and the advantage of the
microkernel approach. Through our research, we developed
our prototype on two generic microkernel-based platforms,
the MINIX 3 [7] and seL4 [8]. In this section, we present
the security enhancement on MINIX 3, which we call access
control matrix (ACM), and how we translate the control
scenario into seL4’s capability system by using the CAmKES
development framework [9]. We illustrate the implementation
details and explain the key differences as well as the security
benefits of our approach.

Microkernel architecture, in contrary to monolithic kernel
architecture, where all OS services and drivers execute in the
kernel address space, is designed in a modular flexible struc-
ture. In typical microkernel based operating systems, kernel
only handles low-level functionality and process primitives
such as interrupts, process control blocks (PCBs), and IPC.
All other OS services and device drivers are running on top
of the kernel in the user mode. The architecture is more robust
compared to the monolithic kernel approach. This is caused by
the reduced size of code running in privileged mode, which

dramatically minimizes catastrophic errors. Furthermore, all
processes in user mode lack the authority to directly access
memory that doesn’t belong to them, thus they are well
isolated. Although the microkernel approach generally under-
performs the monolithic due to the multiple context switches,
from the security point of view, the kernel’s absolute control
over inter-process communication provides an advantage.

One important feature of microkernel based OS is the kernel
facilitated IPC mechanism called message passing. In most
Unix-like systems, the IPC options are either Unix domain
sockets or message queues. Both of these Unix options use
the virtual file system; thus are protected through file access
controls. The solution though flexible, provides fairly limited
security. If not properly configured, these file system handles
could be exploited by adversaries. In fact, several such recent
vulnerabilities have affected both Linux and Android (e.g.,
CVE-2011-1823, CVE-2011-3918, CVE-2016-9793) [10]. In
microkernel architecture, each data transfer operation across
process boundaries goes through kernel, and the kernel can
monitor each of those operations and control the requests. For
example, each system call can be implemented to subject to
strict permission checking. A process can be constrained to
which system calls it can invoke and to which process it is
allowed to exchange information with.

A. MINIX 3

MINIX is a well-known, ever-evolving standard microkernel
based OS that emphasizes on reliability [7]. The latest version
is MINIX 3 which is a full-fledged POSIX-compliant OS that
targets embedded devices. In MINIX the kernel is only about
4000 lines of code. All other OS functionalities such as process
management and virtual memory are implemented as modules
running in user space. Its modular design means that each
process is well isolated, and OS can be easily customized
by adding or removing different servers and drivers to meet
various requirements.

Because of the isolation provided by MINIX 3, the kernel
handles the routing of all messages among all processes. Each
message sent out will go through multiple context switches
among caller process to kernel and kernel to callee process.
In fact, in MINIX 3 all POSIX-compliant system calls such as
fork, kill, exit, etc. can only be invoked by sending a message
through kernel IPC primitives between the caller process and
the process management (PM) process.

MINIX 3 IPC directly supports synchronous and asyn-
chronous message passing, and memory grants. In MINIX
3, messages are fixed-size 64 byte buffers, which includes a
4 byte endpoint identifier, a 4 byte message type field, and
56 byte payload. A destination endpoint has to be explicitly
supplied to send or receive a message. An endpoint identifies a
process uniquely among the operating system. It is composed
of the process slot number concatenated with a generation
number for IPC addressing which is stored in the PCB.
The synchronous message passing uses a rendezvous-style
mechanism. The synchronous ipc send() ipc receive() system
call blocks until the message is delivered to the receiving



process. In the current version, synchronous message passing
is reserved for device drivers and system server components
with designed communication protocols.

B. Security Enhancement in MINIX 3

In order to fully leverage the security advantages of micro-
kernel architecture, we extended the MINIX 3 OS. First, we
modified the MINIX 3 kernel to bring the message passing
primitives to all user processes. Because the kernel facilitates
all of the IPC, it is the ideal location to enforce IPC policy.
By directly exposing the IPC primitives to all user processes,
we also simplify the communication paths and information
flow. Additionally, we added three system calls in the process
management server for improving IPC related operations.

Our second modification to MINIX 3 is on the process
control block (PCB) data structure. We added a field called
access control ID (ac id) as well as added two more related
system calls. fork2(), and srv fork2() can uniquely assign each
process, server, a unique number during booting period. They
are designed to replace the original fork(), and srv fork()
system calls for loading process and system servers with
specified ac id. Process IDs can change, so we needed this
ac id to assist building definitions of IPC policy. We use the
added ac id field to uniquely identify each process and enforce
the control policy.

Our final modification was to design and implement a fine-
grained mandatory access control mechanism called access
control matrix (ACM). The kernel now checks the ACM
for each IPC to determine if the two processes are allowed
to communicate. As the only code running in privileged
mode, kernel has the absolute authority over IPC. Because the
ACM is stored in kernel space, it cannot be easily modified
without recompiling the kernel source code. Thus, correct
implementation of the ACM in kernel space can guarantee
the enforcement of mandatory security checking.

As the name suggests, the ACM is a tabular data structure.
We implemented the ACM using a sparse matrix data structure
for fast lookup and space efficiency. Each ac id indicates an
index entry in the matrix. Each row in the matrix defines which
processes the sending process can communicate with through
message passing, and what type of message is allowed. The
message type is a number indicating what type of communica-
tion is allowed. The interpretation of message type is reserved
for the individual processes and it is assumed by the kernel
that it is pre-negotiated between the sender and receiver. In
our experiment, we use the message type field to represent
different remote procedure calls a certain process provides to
the other process to invoke.

To explain how the mechanism functions, a simple example
is illustrated in Figure 3. There are three processes in the
example, App1, App2, and App3, two of which provide public
remote procedure calls (RPCs). For App1 the RPCs app1 f1(),
app1 f2(), and app1 f3(), are represented by message types 1,
2, 3 respectively. App3 also provides three RPCs like App1;
App2 has no publicly available procedures. For all processes,
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Fig. 3: Fine-grained IPC Using Access Control Matrix

message type 0 is reserved to indicate an acknowledgment to
the caller.

We want to allow App2 access to App1’s app1 f2(),
app1 f3() functions, and we want app1 f1() only be invoked
by App3. We want all confirm messages between processes be
allowed. With this example model, we can define the ACM
as shown in the figure and compile this matrix together with
kernel binary. During runtime, suppose App2 tries to send a
message with message type 2 to App1. The kernel will lookup
the App1’s and App2’s ac id in the ACM. Since the bitmap
is defined as 1101 the message will be allowed. On the other
hand, if the message type is 1 the message will be denied and
the request will be dropped instead.

C. seL4

The seL4 kernel is the first mathematically verified mi-
crokernel [8]. All of seL4’s 10,000 lines of code have been
formally proven for functional correctness. While seL4 isn’t
a complete operating system, it provides an important layer
of reliable task switching and virtual memory management.
Eventually a completely POSIX-compliant operating system
based on seL4 may emerge; however, such functionality isn’t
required for this case study.

We didn’t need to make any modifications to seL4 for our
experiment, since it already exposes the functionality needed
to enforce IPC policy. With seL4, all access control policy,
including IPC policy, is managed with capabilities. At a high
level, a capability is a token which allows access to special
kernel objects. These kernel objects could be page tables,
thread control blocks, IPC endpoints, or many other types [8].
Capabilities are typically owned by executing threads, and the
kernel enforces that no thread without the proper capability
can access the corresponding object. When a thread makes a
system call, it passes an argument identifying which capability
should be invoked; the kernel then checks if that thread has
that capability. Capabilities have wide general usage for seL4
systems; however, further discussion will only focus on aspects
which are important to IPC.

The seL4 designers implemented IPC through capability
primitives [8]. For example, two processes each with a ca-
pability to a common endpoint can communicate.1 Some

1MINIX 3 endpoints are different from seL4 endpoints. In seL4, endpoints
are implemented as wait queues or semaphores.



capabilities can also have specific rights associated with them,
improving their flexibility. read, write and grant are the
three rights allowed, and they can be used to regulate IPC
communication. For instance, if a process has a read-only
capability to an endpoint, it can only receive messages from
that endpoint. The inverse is true for a write-only capability.
In current seL4 revisions, the grant privilege only applies to
endpoint capabilities; it allows any capability to be sent to
another thread via IPC.

There are several different system calls used for seL4 IPC
[8]. The pair seL4 Send and seL4 Recv will send and receive
messages, but they will block if no other process is ready
to send or receive. On the other hand seL4 NBSend and
seL4 NBRecv are non-blocking variants of seL4 Send and
seL4 Recv. If a thread is given grant access to an endpoint
it can use seL4 Call. This system call invokes the kernel to
attach a one-time reply capability to the message, so seL4 Call
is an atomic send and receive. The receiving thread of a
message with a reply capability can use seL4 Reply to send
a reply message. These two system calls, seL4 Call and
seL4 Reply, can be used to build RPC functionality.

The designers of seL4 wanted a minimal kernel where all
access-control policy was specified in user space [11]. To
do this, the kernel simply hands over all capabilities to the
bootstrap process. In this way, a system developer can design
her bootstrap process to implement the necessary IPC policy.
This bootstrap process can create new processes and distribute
capabilities to them to setup the architecture.

D. seL4 and CAmkES

Developing reliable, secure code for seL4 can be a challeng-
ing task because it is laborious to implement a system using
capabilities. System designers need to translate a process ar-
chitecture into a capability model. Using the capability model,
designers must implement a bootstrap process to distribute
the capabilities to the child processes. Boilerplate code must
also be written for each process to use the capabilities to
perform IPC. This entire process is prone to error, and it is
also highly mechanical. In a recent paper, researchers theorized
about using a tool called CAmkES (Component Architecture
for microkernel-based Embedded Systems) [9] to automate the
development of seL4 systems [12]. This tool, CAmkES, will
generate all the boilerplate code that implements a specified
process architecture. This boilerplate code, also called glue
code, abstracts away seL4 capabilities from the developers,
and it allows them to think about high-level design.

The glue code generated by CAmkES has two major
components. The first is the bootstrap process; this part is
generated using a language called CapDL. CapDL is a domain
specific language used to describe capability-based systems
[13]. For CAmkES, CapDL is used to describe the state of
all the capabilities after bootstrap. With this language, then, a
bootstrap process can be generated to implement the desired
architecture [14]. The second part of the glue code is the user-
level libraries which abstract IPC communication into RPCs.

Using CAmkES and seL4 we can build a system where the
kernel enforces IPC policy. An important difference between
seL4 and MINIX 3 then is where the IPC policy is defined.
Because the IPC policy for MINIX 3 is defined in kernel
space at compile time it cannot change at runtime (unless
the kernel is exploited). Alternatively, seL4’s IPC policy is
defined in user space at runtime [11]. This means that the
architecture could change at runtime if one process sends its
capabilities to another process. SeL4 has one primary way for
independent processes to share capabilities among them, the
aforementioned grant access right.2 The effects of this right
depend on the scenario and will be discussed in the following
section.

IV. EXPERIMENTATION

We implemented the extracted temperature control scenario
of Figure 2 on both the security enhanced MINIX 3 and seL4.
Additionally, we use a similar implementation on Linux for
comparison. This section explains the implementation details
on all three OSs, and it also discusses our experiment to
measure the impacts of various attacks. The first step in
our experiment is to correctly interpret the control scenario.
To properly study the scenario’s communication scheme and
operational attributes, we decided to construct a formal model
of this simple scenario using AADL (the SAE Architecture
Analysis Design Language) [15].

For this specific scenario, we model the logic components
in the process level, and focuses on the IPC patterns. The
whole scenario is modeled as a system implementation in
AADL semantics. The system includes five process compo-
nents: tempProc, tempSensProc, heaterActProc, alarmProc,
and webInterface. Each of these corresponds to the five
processes and three devices: alarm, heater, tempSensor as
described in Section 3. The allowed IPC is modeled as AADL
data and event ports. These ports have a predefined data
format and direction (in or out) which indicate how data can
enter or leave from a source or to a sink. Additionally, the
data flow is modeled using AADL connections, which allows
users to specify the allowed IPC. In the definition of each
process, we use the properties keyword in AADL to annotate
each process’s unique ac id, for example in this scenario:
TempSensorProcess.imp is 100, and TempControlProcess.imp
is 101 etc.

The AADL model helps us to better specify the exact
responsibilities of each process. However, using AADL to
build systems is a mechanical task of interpreting the spec-
ification and then translating that into the domain specific
implementation. To reduce the amount of work for system
designers and the potential for errors, we partially automate
this process by creating an AADL to C compiler. This source-
to-source compiler can automatically generate the ACM for
the AADL specification. Its job is to traverse AADL models,
extract various processes and their unique ac id, generate the

2Independent processes are not ancestors of each other. If one thread starts
another, it has access to its child’s capability space.



Fig. 4: Temperature Control Testbed

matrix data structure in C language based on the specified
connections.

A. Implementation on Security Enhanced MINIX 3

In this experiment, we use the BeagleBone Black as the pro-
totype development platform. BeagleBone Black is an open-
source single-board computer hardware produced by Texas
Instruments. Using a BeagleBone together with a sensor and
actuator we assembled a simulated control environment. For
the temperature sensor, we choose the BMP180 barometric
pressure sensor, which can measure both air pressure and
temperature. For the heater actuator, we simply use a fan
actuator and manually heat up the environment for emulation.
For the alarm actuator, we use the on-board LED light instead.
Figure 4 shows the our testbed implementation.

On the MINIX 3, we implemented the sensor driver and fan
driver as the temperature sensor process and heater actuator
process respectively. Besides those five processes, a scenario
process is included to initialize the control environment. The
scenario process acts as a process loader that forks the other
five processes, tells kernel each process’s ac id, and loads the
correct binaries for each of them. In a real system, new process
binaries and their ac ids would be loaded by the init server
based on the specification. Each process communicates via
synchronous message passing. Additionally, each process has
a set of predefined message types it accepts, while the ACM
mechanism restrains which kind of message types can be sent
from which process.

In the scenario, the most important process is the temper-
ature control process. When the process starts, it executes
the initialize function to retrieve endpoint of each process it
needs to communicate with. Then the process enters a while
loop, waiting for the new sensor data from temperature sensor
process. When data arrives, the sensor data will be compared
with temperature setpoint to decide whether to turn on or
turn off the fan, meanwhile a timer will be checked if the
temperature is out of the range of the setpoint. If within a
certain time the temperature control fails to maintain the range
within the setpoint, the alarm will be triggered. Then the
process will check if there are pending messages from web
interface process for updating new setpoint. At the end of the

while loop, environment information will be written in a log
file.

The remaining processes are relatively simple. The tem-
perature sensor process periodically samples the environment
temperature and sends the fresh data using nonblocking send
system call to the temperature control process. Both the alarm
actuator process and the heater actuator process are imple-
mented to passively wait for commands from temperature
control process. Lastly, the web interface process acts as a
basic human-machine interface. It is a static HTTP web server
with 5 fixed child threads. The process maintains TCP socket
on port 8080 and supports HTTP GET and HTTP POST.

B. Implementation on seL4

For the seL4 experiment, identical to the MINIX 3 design,
we used a BeagleBone platform with sensor and actuator.
Additionally, the process architecture also follows the AADL
architecture description. We used CAmkES to implement the
AADL description and to generate all the necessary glue
code. The bootstrap process initializes the temperature control
process, the alarm actuator process, the temperature sensor
process, the heater actuator process, and the web interface
process. We also added two additional timer driver processes
for demonstration purposes. All of the processes follow similar
implementation patterns as the MINIX 3 and Linux implemen-
tations.

AADL and CAmkES are similar languages; both describe
high-level component behavior. Translating between them is
relatively simple because AADL processes and systems are
like CAmkES components and assemblies. In both languages,
we first define components, then instantiate them, and finally
describe the connections between them. CAmkES, like AADL,
allows for many different connection types. For example, data
ports and RPC connections are allowed in both. We have
begun development of an AADL to CAmkES source-to-source
compiler, but in the meantime, we manually translated our
AADL model into a CAmkES description.

The seL4RPCCall connection type generates glue code
to implement remote procedure calls using seL4 Call and
seL4 Reply. We chose to use this type for our connections
to avoid a scenario where the malicious web interface could
indefinitely block one of the temperature controller’s threads.
This specific IPC vulnerability is caused by the asymmetric
trust between a client and server [16]. Because we use this
connection type, this means that the untrusted web interface
will be given a capability with the grant privilege. While the
web interface will be able to modify the capability distribution
slightly with the grant privilege, we argue that it cannot
ever gain additional capabilities. Intuitively, if an untrusted
process can only send away capabilities to trusted processes,
the untrusted process could never gain more capabilities.

C. Implementation on Linux

The implementation on Linux is very similar to the im-
plementation on MINIX 3. The only major difference is
that on Linux the interprocess communication is conducted



through POSIX message queues. Message queues provide an
asynchronous communication protocol. A majority of real-
time operating systems encourage the use of message queuing
as the primary inter-process communication mechanism for
real-time applications. On Linux, message queues are first in
first out. They are implemented through the virtual file system
and are supported by real-time library. Similarly to MINIX 3
and seL4, we use a scenario process to facilitate the loading
procedure. The scenario process in Linux spawns all other
processes and creates 6 message queues that are needed for
various communications.

D. Attack Simulation

In our temperature controller scenario, we suppose that an
attacker would want to manipulate the critical functionality
of the device. This would mean an adversary would want
to gain access to the drivers, either to send arbitrary data,
kill their execution, or otherwise incapacitate them. With
our Linux, MINIX 3, and seL4/CAmkES temperature system
implementations, we simulated two types of attacks. In the first
simulation, we assume the web interface process can execute
arbitrary code, and have enough knowledge about other control
processes. In the second simulation, we also assume the web
interface process has root privilege gained through a privilege
escalation exploit or through miss-configuration.

1) Linux: In the first simulation on our Linux implemen-
tation, with the assumption that the adversary can execute
arbitrary code in the web interface process, the attacker can
easily spoof messages to all message queues. We successfully
used the web interface process to impersonate the temperature
sensor process, and we deviated the temperature control pro-
cess’s behavior by sending fake sensor data. Even when the
environmental temperature is lower than desired temperature,
we were able to get the temperature control process to still
turn the fan on. Additionally, the LED controlled by alarm
actuator process showed everything is normal. Similarly, we
were able to send commands to the heater actuator process
and the alarm actuator process to arbitrarily control the fan
and LED. Since all five processes are running under the same
user account, the file access control mechanism allows the
web interface process to read and write all message queues.
Unless each process runs under a unique user account, and
the message queue is specifically configured to only allow the
correct user account, the problem will still remain.

In the second simulation, we assume the adversary who
controls the web interface process also has root privilege
through privilege escalation exploit. In this simulation, the
attacker can send spoofing message to all message queues even
when all processes are running under different user accounts
and the access control of message queues are well configured.
Furthermore, the attacker can kill the temperature control
process to incapacitate the whole control scenario, disable the
alarm control for good and take over the control completely.

2) MINIX 3: Following the experiment on Linux, we tested
the same two simulations on the security enhanced MINIX 3.
In the first simulation the attacker cannot do much damage

because IPC communication in MINIX 3 is through kernel-
facilitated message passing. The web interface process in user
land cannot change a process’s identity stored in the kernel
PCB, hence spoofing by trying to fake one’s identity cannot
work. Even if the temperature control process has design flaws,
like failing to check the message type and sender’s identity,
the kernel will audit each round of communication using the
ACM to stop spoofing attacks.

In the second simulation, we give the web interface process
root privilege; however, the result is the same. For the same
reasons mentioned above, with root privilege web interface
still cannot spoof message to other process by impersonation.
Unlike Linux, in microkernel based architectures user priv-
ilege is not directly tied with access control and IPC. Our
experimental attack also tried to kill other processes with root
privilege with the intention to incapacitate the control scenario.
However, we incorporated the process management server with
ACM auditing mechanism, and the policy explicitly disallowed
the web interface process to use kill system call.

Other types of attack might exist for MINIX 3 systems.
For example, because web interface process has the privilege
to fork children processes, it can potentially launch a fork
bomb to eat up system resources. This is problematic; although
Linux is in the same situation. This issue could be solved by
using the ACM to give each system call a quota. We will
explore this in future research.

3) seL4/CAmkES: In a worst-case scenario, the web inter-
face process is compromised remotely, allowing arbitrary code
execution. To simulate this, we assume the web interface is al-
ready compromised, and we designed it to demonstrate attack
possibilities. Since the seL4 kernel and CAmkES generated
code have no concept of user or root, the attack surface is
limited to system calls into the seL4 kernel and communication
to other processes. Given the formal verification of the seL4
[8], we assume that the kernel isn’t exploitable. Thus, the only
attack surface is available to the compromised web interface
is via IPC, and IPC policy is gated by capabilities. In our
implementation, the web interface has only one capability, to
communicate with the temperature controller process.

We attacked the seL4 implementation in two primary ways,
by attempting to kill processes and spoof data via IPC.
Both methods of attack are implemented in the same way
since both require capabilities to reach out of the malicious
process’s virtual memory space. In addition to arbitrary code
execution, we assume adversary has access to the capability
distribution information. At compile time, CAmkES generates
a CapDL file with this information, and we expect this file
to be correct (for high-assurance systems this file can also
be machine verified with the correlating source code [14],
as mentioned in the implementation section above). Per the
CapDL file, our malicious process, the web interface, should
only have access to one capability in our implementation; it
can only initiate RPCs to the temperature controller process.
We also tested this with a simple brute-forcing program which
attempts to enumerate all the seL4 capability slots. This brute-
force program was unsuccessful in finding any additional



capabilities, so it never could send arbitrary data nor kill any
other processes.

The comparison of a seL4/CAmkES system to MINIX 3 and
Linux is complicated by the fact that our CAmkES system is
not a complete operating system with a root user. However, we
argue that our comparison provides evidence about how a full
seL4 OS would behave. If a file system and process manager
were implemented in an seL4 OS, they would also be user-
level processes. In this case, capability distribution could still
manage access to the critical systems.

V. RELATED WORK

The security of Cyber-Physical Systems is a broad research
topic that is still in its early stage. One research project that
shares a similar vision is DARPA’s High-Assurance Cyber
Military Systems (HACMS) program for using formal methods
to enable more secure vehicles. The project aims at pursuing a
clean-slate, formal methods-based approach to the creation of
more secure vehicles by designing high-assurance, networked
embedded systems from bottom up. Similar to our work,
this project sees the advantage of microkernel architecture.
In the HACMS project, researchers developed a UAV called
SMACCMCopter that achieved high security against penetra-
tion testing. Their designs leverage existing high-assurance
technologies, such as formally verified seL4 kernel, and con-
ducted domain specific model using AADL [17].

On the other hand, the design and development of secure
and reliable operating systems have been an ever-evolving
journey for a long time. In response to the increasingly com-
plex code base in monolithic kernel, microkernel architecture
has been a popular topic in recent years once again. One
of the most widely used commercial microkernel operating
system is QNX Neutrino RTOS from BlackBerry [18]. QNX
is a commercial Unix-like RTOS that is mainly used on
Internet routers, Remote Terminal Units (RTUs) and in-car
infotainment systems. Last year, anti-virus firm Kaspersky
also launched its own microkernel-based Kaspersky OS; it
made a debut on a Kraftway Layer 3 Switch with inbuilt
security related mechanisms [19]. However, since both QNX
and Kaspersky OS are commercial and closed source, their
technical details and availability are limited.

VI. CONCLUSION

In this work, we present our initial experimental result
on the idea of using security enhanced microkernel-based
platforms for the next generation building automation sys-
tem. We analyzed and extracted a real-world BAS control
scenario, and demonstrated why microkernel-based platforms
provide a more reliable and secure framework for control
systems. We implemented the temperature control scenario in
a well-controlled simulation environment using both security
enhanced MINIX 3 and the seL4 kernel. We presented the
prototype design of security enhanced MINIX 3, and the
viability of our proposed ACM fine-grained mandatory access
control. We also evaluated the formal verified seL4 micro-
kernel and CAmkES framework. We simulated two types of

attacks and demonstrated that the microkernel based approach
can stop attacks that can easily be successful on a monolithic
kernel (Linux) based system. Our study showed that how the
microkernel-based architecture can be used to design more
secure and fault-tolerant computing foundation for Cyber-
Physical Systems and IoT devices.
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