Android Malware Clustering Through
Malicious Payload Mining

Yuping Li'®™, Jiyong Jang?, Xin Hu?, and Xinming Ou'

! University of South Florida, Tampa, USA
yupingli@mail.usf.edu, xouQusf.edu
2 IBM Research, Yorktown Heights, USA
jjang@us.ibm.com
3 Pinterest, San Francisco, USA
huxinsmail@gmail.com

Abstract. Clustering has been well studied for desktop malware analy-
sis as an effective triage method. Conventional similarity-based clus-
tering techniques, however, cannot be immediately applied to Android
malware analysis due to the excessive use of third-party libraries in
Android application development and the widespread use of repackaging
in malware development. We design and implement an Android mal-
ware clustering system through iterative mining of malicious payload
and checking whether malware samples share the same version of mali-
cious payload. Our system utilizes a hierarchical clustering technique and
an efficient bit-vector format to represent Android apps. Experimental
results demonstrate that our clustering approach achieves precision of
0.90 and recall of 0.75 for Android Genome malware dataset, and aver-
age precision of 0.98 and recall of 0.96 with respect to manually verified
ground-truth.

1 Introduction

Triaging is an important step in malware analysis given the large number of
samples received daily by security companies. Clustering, or grouping malware
based on behavioral profiles is a widely-studied technique that allows analysts
to focus their efforts on new types of malware. Multiple static [14,30], dynamic
[2,22], and hybrid [12] analysis based clustering techniques have been proposed
in the desktop malware domain.

With the rapid growth of Android smart devices, malicious Android apps
have become a persistent problem. Security companies receive a list of (poten-
tial zero-day) malware on a daily basis [28]. Those apps that present certain
suspicious behaviors but are not detected by any existing anti-virus scanners
need to be further analyzed manually. Conducting clustering on those incoming

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-66332-6_9) contains supplementary material, which is available to
authorized users.

© Springer International Publishing AG 2017

M. Dacier et al. (Eds.): RAID 2017, LNCS 10453, pp. 192-214, 2017.
DOI: 10.1007/978-3-319-66332-6_9

http://dx.doi.org/10.1007/978-3-319-66332-6_9
http://dx.doi.org/10.1007/978-3-319-66332-6_9

Android Malware Clustering Through Malicious Payload Mining 193

malware apps can allow the analysts to triage their tasks by (a) quickly identify-
ing malware that shares similar behaviors with known existing malware so they
may not allocate much resources on it; and (b) selecting a few representative
apps from each new malware cluster to prioritize their analysis.

We often observe that existing approaches to group Android malware based
on their behaviors have provided limited capabilities. For example, existing
Android malware detection products may report a family name for a detected
sample; however, samples from one family can have multiple different versions of
malicious code segments presenting significantly different behaviors. Therefore,
the malware family information provided by AV products can be incomplete to
describe crucial malicious code segments of Android malware.

Existing overall similarity analysis based clustering system cannot be imme-
diately applied for Android malware clustering because the malicious code seg-
ments often constitute only a small fraction of an Android malware sample. In
desktop malware clustering, the static or dynamic features are first extracted
from target samples. Then a clustering algorithm (e.g., hierarchical agglomer-
ative clustering) is applied to group the samples such that samples within the
same resulting group share high level of overall similarity. However, we note
that overall similarity analysis performs poorly in Android malware clustering
because of two common practices in Android malware development.

The first practice is repackaging. Malware writers may embed the malicious
code inside an otherwise legitimate app, in which case the real malicious code
segment is likely to be small compared to the original benign app. Our analysis
shows that the ratio of the core malicious code segments to the entire app for a
collection of 19,725 malware samples is between 0.1% and 58.2%. Given the small
percentage of malicious code segments, the conventional clustering approach that
is based on overall code similarity will not work well. For example, two malicious
samples from different families can be repackaged based on the same original
benign app, thus presenting high level of overall similarity. Likewise, Android
malware variants with the same malicious code of one family can be repackaged
into different original benign apps, thus presenting low level of overall similarity.

Another practice is utilizing shared library code. Android apps often include
a variety of third-party libraries to implement extra functionalities in a cost-
effective way. If the library code size is too large compared to the rest of the
app, samples from different malware families may be clustered together simply
because they share the same libraries. We measured the library code proportion
of the 19,725 malware samples. For 13,233 of the samples that used at least
one legitimate library, we found that the average library code ratio is 53.1% in
terms of number of byte code instructions. This means a large portion of an
Android app belongs to libraries. One approach to prevent those libraries from
“diluting” the malicious code segments is to use a whitelist [4-6,8,10] to exclude
all library code. However, previous work leverages only the names of libraries
while building a whitelist as opposed to the content of libraries. We observed that
malware authors injected their malicious code under popular library names, such
as com.google.ssearch, com.android.appupdate, android.ad.appoffer, and

194 Y. Li et al.

com.umeng.adutils. Consequently, naive whitelisting approaches inadvertently
remove certain malicious payloads together with the legitimate library code from
analysis. We found that about 30% of our analyzed Android malware families
disguise their malicious payload under popular library names.

Due to the above two reasons, directly applying overall similarity analysis on
Android apps will not be effective for Android malware analysis. A major chal-
lenge is to precisely identify the malicious code segments of Android malware.
For simplicity, we refer to the core malicious code segments of Android malware
as malicious payload. A payload can be an added/modified part of a repack-
aged malware app, or the entire code of “standalone” malware app excluding
legitimate library code.

In this paper we propose an Android malware clustering approach through
iterative mining of malicious payloads. Our main contributions include:

1. We design and implement an Android malware clustering solution through
checking if apps share the same version of the malicious payloads. By recon-
structing the original malicious payloads, our approach offers an effective
Android malware app clustering solution along with fundamental insights
into malware grouping.

2. We design a novel method to precisely remove legitimate library code from
Android apps, and still preserve the malicious payloads even if they are
injected under popular library names.

3. We conduct extensive experiments to evaluate the consistency and robustness
of our clustering solution. Our experimental results demonstrate that our
clustering approach achieves precision of 0.90 and recall of 0.75 for Android
Genome malware dataset, and average precision of 0.984 and recall of 0.959
regarding manually verified ground-truth.

2 Overview of Android Malware Clustering System

Rather than directly conducting overall similarity analysis between Android mal-
ware samples, we first design a solution to precisely remove legitimate library
code from Android apps. We consider the shared code segments (excluding legit-
imate library code) between the analyzed Android apps as candidate payload,
and find all of the input Android apps through pairwise intersection analysis. For
a group of n apps, each input app will contribute to n — 1 versions of candidate
payloads.

After extracting all candidate payloads, we conduct traditional clustering
analysis on all candidate payloads to group similar ones together. Base on sev-
eral key insights that are learned from analyzing candidate payload clustering
results, we design an effective approach to iteratively mine the payload clusters
that are most likely to be malicious, and make sure that each input app will
only contribute one version of malicious payload. Finally, we use the identified
malicious payload clusters and payload-to-app association information to group
the input Android malware apps. We describe this process in more details below.

Android Malware Clustering Through Malicious Payload Mining 195

) B3 (4)
/fplfz\\ “Mined” Clusters
(1) s ‘\\;plé/‘ (size > 1) (5)
. p2- 512 App Clusters
fol fpl-4 /fp 2\ P Clu

fpls 35 (P13) ey (1,2,3
;Ei Pairwise | fp2-3 | Clustering <\f-p§—4/> |terative \\fpzﬁ/ Associate o
Intersection | fp2-4 | Analysis o1 d Selectin B
fpd fp2-5 (&

fp5 fp3-4 /ﬁf'?é% Skipped
fp3-5 < > Clusters
App FPs fp4-5 el (size = 1)
Candidate Fpt5 > oIS
__fp4-5—
Payload FPs All Payload Clusters

Fig. 1. Overview of the clustering system with five Android malware samples.

Figure 1 illustrates the overview of the clustering analysis system with five

malware samples.

1.

Library code removal: We convert malware samples into fingerprint rep-
resentation, and design an effective approach to precisely remove legitimate
library code from each app fingerprint. We denote the library-removed app
fingerprints as fpl, fp2, fp3, fp4, and fp5 accordingly.

Candidate payloads extraction: We conduct a pairwise intersection analy-
sis to extract all shared code segments (e.g., candidate payloads) between
input apps. Relying on the app fingerprint representation, we create candidate
payload fingerprints, and record the payload-to-app association information.
For example, fpl-2 indicates that this candidate payload is extracted from
malware sample 1 and 2.

Candidate payloads clustering: We then perform hierarchical clustering
on all candidate payloads with a predefined clustering similarity threshold 6,
e.g., the candidate payload fingerprints fpl-2, fpl-3, and fp2-3 are grouped
together as the largest payload cluster based on the overall payload similarity.
Malicious payload mining: After removing legitimate libraries, similar
malicious payloads extracted from samples in the same malware family will
become more popular' due to the “legitimate” reason of code reuse. Therefore,
we design an iterative approach to mine the popular payload clusters from the
clustering results, which are more likely malicious payload. For instance, can-
didate payload cluster containing fp1-2, fp1-3, and fp2-3 is selected as the most
popular cluster. To ensure that each input app only contributes one version
of final malicious payload, we simultaneously update the remaining payload
clusters. e.g., fingerprints fpl-4, fp1-5, fp2-4, fp2-5, fp3-4, and fp3-5 are then
skipped because malware sample 1, 2 and 3 have already been “used”.
Malicious samples grouping: We group the original Android samples
based on payload mining results and payload-to-app association information
such that the samples within each app cluster contains the same version of
the malicious payload. For example, malware samples 1, 2, and 3 are grouped
together based on the selected candidate payload cluster containing fpl-2,
fpl-3, and fp2-3.

! Further intuition explanation and popularity criteria are included in Sect. 4.

196 Y. Liet al.

3 App Fingerprint Representation and Utilization

As we can see from Sect. 2, the clustering system requires an effective fingerprint
representation to denote input Android apps and candidate payloads. Ideally,
the fingerprint needs to be constructed from the code segments of the input app
and support two fundamental operations: precisely removing legitimate code,
correctly extracting shared app code.

Based on these requirements, we decide to represent Android apps as bit-
vector fingerprints, by encoding the features that are extracted from app code
through feature hashing [13,14,26]. The value of each bit in the generated fin-
gerprint is either 0 or 1, indicating whether the corresponding app has a specific
feature or not.

This bit-vector format enables us to precisely remove legitimate library code
(Sect. 3.2), extract shared code segments (Sect. 3.3), and reconstruct the original
malicious payload (Sect.3.4) by utilizing the bit manipulation capability.

3.1 Fingerprint Generation and Fingerprint Comparison

In this work, we use n-gram sequence of Dalvik bytecode to denote an Android
app feature, and use a bit-vector fingerprint to represent the extracted features.
The overall fingerprint generation process is shown in Fig. 2.

i Preprocessed Dalvik Application
An(_jrm_d P 2-gram Features PP "
Application Bytecode Sequences Fingerprint
s 1
1. if-
s - 1. if-eqz, if-nez 0
2, if-nez 5 . . 1
3, iget-object 2, if-nez,iget-object 3 1
1 -) 2 3, iget-object,invoke-direct
4, invoke-direct ; e - 0
— . R s | 4, invoke-direct,invoke-virtual | s 4
5, invoke-virtual
. X 5. invoke-virtual, iput-object 0
6, iput-object . N
) 6. iput-object, move-result 1
7. imove-result 0
........ 1

Fig. 2. Overall fingerprint generation procedure

For each Android app, we first use Dexdump [7] to disassemble classes.dex
into Dalvik bytecode, then preprocess the Dalvik bytecode sequences to only
include the major distinctive information and extract the n-gram features from
the preprecessed bytecode sequences. We follow similar approach to extract the
distinctive information (e.g., bytecode opcode) for feature construction as Jux-
tapp [11]. Since feature space is vital to support the key operations designed in
this work, we decide to increase the feature space by including more generic but
meaningful information from each bytecode instruction. The major distinctive
information is separated into 4 categories and summarized in Table 1. Besides the
feature differences shown in Table 1, we extract the n-gram features at the func-
tion level, while Juxtapp extracts n-gram features at the basic block level. For
simplicity, we only show the Dalvik bytecode opcode sequences as the distinctive
instruction information in Fig. 2.

Android Malware Clustering Through Malicious Payload Mining 197

Table 1. Major feature categories and main differences comparing with Juxtapp

Feature category Examples Our approach | Juxtapp
Dalvik bytecode opcode sequences | sget, goto, return v v

Java VM type signatures Z(Boolean), B(byte) | v’

String value of const-string — v

instructions

Type signatures for “invoked” f(1,B)Z v

functions

After extracting all the n-gram features, we then encode all the features in
a bit-vector format fingerprint through feature hashing technique using djb2
hash function. During feature hashing process, we use a tuple A(%, j) to represent
a feature position, in which 4 is the function offset indicating from which function
the particular n-gram feature is extracted, and jis the bytecode offset indicating
the position of the n-gram feature within the corresponding function. Then the
feature-to-bit information is stored in a map, in which the key is the bit index
within the fingerprint indicating where the feature is stored, and the value is the
list of feature tuples that are mapped to the bit location. With increased feature
space, we hope to reduce majority of the random feature collisions, and allow
each bit index to represent the same n-gram feature content.

Similar to the complete Android apps, individual legitimate libraries and the
candidate malicious payloads are also represented in the same size of bit-vector
fingerprints. The concrete n-gram size and the fingerprint size used for clustering
are determined through analyzing the collision rate of random features, which is
discussed in Sect. 6.2.

To measure the similarity between two fingerprints, we use the Jaccard index,
or the Jaccard similarity, which is defined as the size of intersection divided by
the size of union of two sets. Since each fingerprint is a bit-vector, we leverage
cache-efficient bit-wise AND (A) and bit-wise OR (V) operations to compute the
intersection and the union. Then, the similarity of two fingerprints fp, and fpy
is defined as follows:

S(fpa A fpb)

Similarity(fpa, foo) = g =000

(1)

where S(-) denotes the number of 1-bits in the input.
Our fixed-sized bit-vector fingerprint representation also allows us to easily
measure containment ratio in a similar fashion:

5(fpa A fpn)
S(fpa)

which measures how much of the content of fp, is contained in fpy.

Containment(fp,, fpp) =

(2)

198 Y. Liet al.

3.2 Fingerprint Based Library Code Removal

To precisely remove legitimate library code without excluding a possibly injected
malicious payload, we exclude legitimate library code from an app by removing
the library-mapped bits from the app bit-vector fingerprint. For each legitimate
library, we collect its official jar file and disassemble it into Dalvik bytecode
sequences; then apply the same feature hashing technique to map the n-gram
features of the library code into a bit-vector fingerprint fpj,. We then flip all
the bits in the library fingerprint to get fpjp. Since the same features contained
in an Android app and the library are mapped to the same bit positions in
their fingerprint representation, we can exclude library-mapped bits from an
app fingerprint by bit-wise ANDing fpyp, and fpapp. Figure3 demonstrates the
overall procedure to safely remove legitimate twitter4j library code from a
malware sample.

b
Malware A1 ba

fo 4
Malware A1 Malware A1 fingerprint

Malware Al fingerprint
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ /2

Candidate payload “Al-2fingerprint

h

P a)
Malware-Al library filtered fingerprint £

cocobrrrrooboo00

Twitterd; library fingerprint
Twitterdj Lib
! Soun

Fig. 3. Example procedure to safely
remove legitimate “twitter4j” library

Malware A2 fingerprint

foa

Malware A2

Fig. 4. Extracting a candidate payload
from two malware applications

code

We first conduct statistical analysis for the disassembled apps to identify the
embedded legitimate libraries, and record the years when the target samples
were created. We then obtain? the officially released library jar files to create
the corresponding library fingerprints, and remove the library code from the
analyzed apps. The library code removal process is applied only when an app
contains code snippets that are defined under corresponding library namespaces.

In our implementation, each library is represented with an individual finger-
print. We encode multiple versions of the same library together in a single library
fingerprint. This aggregated library representation may cause potential feature
collision between the app code and the irrelevant versions of the library code.
However, we empirically demonstrate in Sect. 6.3 that the library code removal
process is precise because different versions of the same library typically share
high level of code similarity due to code reuse, and the size of the single library
is often smaller than the entire app.

3.3 Fingerprint Based Candidate Payload Extraction

The next operation is to extract malicious payloads from malware samples. We
consider the shared code segments (after excluding legitimate libraries) between

2 We randomly select one version of library in each year in case there are multiple
versions of libraries released within the same year.

Android Malware Clustering Through Malicious Payload Mining 199

each malware sample pair to be a candidate malicious payload. For a group of
malware samples, we obtain the intersection of every fingerprint pair of library-
excluded samples, and consider the shared 1-bits between the sample fingerprints
as a candidate payload fingerprint.

Figure 4 describes the intersection analysis procedure to extract a candidate
malicious payload at a high level. For two malware samples we first build their
fingerprints and exclude the legitimate library bits from the fingerprints. Then we
pinpoint their shared 1-bits (e.g., bits index 2, 3, and 4) as potentially malicious®
bits and construct a candidate payload fingerprint.

During the candidate payload extraction process, we keep track of the asso-
ciation information between the candidate payload (e.g., A1-2) and the corre-
sponding samples (e.g., A1 and A2). We subsequently use the payload-to-app
association information and the malicious payload mining results to group mal-
ware samples.

3.4 Fingerprint Based Malicious Payload Reconstruction

Using the bit-vector fingerprint representation, we can also define the cluster
fingerprint for a version of the candidate payload cluster as the intersection of
all the candidate payload fingerprints in the cluster. The 1-bits contained in the
resulting cluster fingerprint can be viewed as the shared malicious bits for all
input apps that share the same version of malicious payload.

Using the identified malicious bits from app fingerprints, we can then recon-
struct the corresponding malicious payload code by checking the feature-to-bit
mapping information that was recorded during feature hashing, which can be
viewed as the reverse procedure of fingerprint generation. Given the identified
malicious bits, we locate the feature tuples that are mapped to those identified
malicious bits. We use each retrieved feature tuple to locate the n lines of code
where the n-gram feature is extracted, then reconstruct complete malicious code
sequences by properly stitching the identified n lines of code segments together.

In practice, feature collision is possible but becomes negligible with appro-
priate n-gram size and fingerprint size, thus we will rarely recover the irrele-
vant code. To certain extent, payload code reconstruction compensates feature
hashing collisions (e.g., resulting in missing n-grams) as far as the missing n-
gram is within the overlapped original code sequences of recovered features.
The reconstructed malicious payload code can be further inspected to verify its
maliciousness.

4 Malicious Payload Mining
Key insights: (a) In practice, when feature hashing is configured to have a
low collision rate, malware app fingerprints will not contain a large number of

shared 1-bits unless they do share certain common features (e.g., payload code

3 malicious payload mapped.

200 Y. Liet al.

snippets). (b) Likewise, if a target dataset contains malware samples that do
share the same version of the malicious payload, then the candidate payload
fingerprints extracted from those samples will contain similar shared 1-bits and
be automatically clustered into the same group. (c) After removing legitimate
library code from an app, similar malicious payloads have higher chances to form
a larger cluster than the ones related to less popular libraries or coincidentally
shared code segments. (d) Compared to coincidentally shared code segments,
similar malicious payloads will have a larger shared code base because of “legiti-
mate” reason of code reuse in the same malware family, and the fingerprints for
the malicious payloads will have a larger amount of shared 1-bits.

Based on the above key insights, we design the following strategies to itera-
tively select representative candidate payload clusters based on payload popular-
ity, which is determined based on the three criteria: the entry size of a payload
cluster [, the number of distinct apps associated with a payload cluster m, and
1-bits count of a payload cluster fingerprint k.

— We count the number of candidate payload fingerprint entries in each cluster,
and maximize the possibility of extracting core malicious payloads by selecting
the clusters with the largest number of payload fingerprint entries. Payload
cluster size [is a direct indicator for the popularity of the shared code segments
between malware samples, and such popular shared code is a good candidate
for one version of malicious payloads since we have already filtered out popular
legitimate library code.

— We measure the distinct apps m that contribute to generating candidate pay-
load fingerprints of each cluster, and select the clusters with the largest number
of distinct apps if they have the same number of payload entries. Payload clus-
ters that contain a large number of unique payload entries are often associated
with a large number of distinct apps, and we use this app association informa-
tion to break the tie in case the number of cluster entries are the same since
distinct apps can be considered as another sign of comparative popularity.

— We obtain the intersection bits k of payload fingerprint entries in each clus-
ter as the cluster fingerprint. If two clusters are associated with the same
number of distinct apps, we then select the one with the larger number of
1-bits in its cluster fingerprint. In this way, we can extract the payload with
a larger code size, and it helps to increase the likelihood of getting malicious
payloads together with shared libraries, and we subsequently exclude possibly
remaining libraries later.

— During cluster selection, we keep track of which apps have been used to gen-
erate candidate payload fingerprints in the previously selected clusters, and
consider already-selected apps as “inactive”. We update the remaining pay-
load clusters by removing candidate fingerprint entries that are associated
with “inactive” apps. Skipping such fingerprints allows us to extract one ver-
sion of the malicious payload from each app. This helps to merge all the
shared core malicious code together, and only extract the widely shared mali-
cious code between all apps, which also helps to reduce the probability of
extracting non-malicious payload code.

Android Malware Clustering Through Malicious Payload Mining 201

— We omit a payload cluster if the corresponding cluster fingerprint contains
less than the minimum % number of 1-bits, meaning that the extracted code
segments are too small. It forces the algorithm to break the current large pay-
load cluster into smaller clusters with a larger code size, and prevent different
malware families from being clustered together. We set the minimum number
of 1-bits k£ to 70 since the majority of the analyzed Android malware app
fingerprints had more than 70 1-bits.

— We exclude a candidate payload cluster if it becomes empty after the update in
the last step, or if the number of payload fingerprint entries is too small (e.g.,
I = 1). This is because Clusters with only a single candidate payload entry
provide little additional popularity information, and are more likely to contain
less popular libraries or other coincidentally shared code snippets. We consider
malware samples associated with such payload clusters as unclustered, and the
unclustered app is evaluated as a singleton.

The shared payloads between Android samples can be library code seg-
ments, malicious payloads, copy-and-pasted code segments, or other coinciden-
tally shared code segments. The above payload mining strategy enables us to
select the most likely malicious candidate payload groups. Legitimate non-library
reused code may be collected together with malicious payload only if it is shared
across a significant number of apps. Otherwise, the less popular legitimate non-
library code will be evidently excluded during the (popularity-based) payload
mining procedure. If the same benign app is indeed used by many malware
apps, we can further exclude original benign app code (i.e., the legitimate non-
library reused code) in a similar way to remove library code using a benign app
fingerprint.

5 Optimize Overall Clustering Efficiency

According to the previously discussed malicious payload mining procedure, we
will generate W versions of candidate payload fingerprints given n malware
samples, but the hierarchical clustering algorithm also has a quadratic complex-
ity with respect to the number of analyzing targets. Due to the overall quartic
complexity of the algorithm, directly using it to analyze large number of samples
becomes a time-consuming task. Therefore, we further develop two methods to
improve the scalability of the clustering analysis procedure, and hereafter refer

them as Opt-1, and Opt-2.

5.1 Opt-1: Optimize Each Pairwise Computation

The first method to speed up the overall clustering process is to optimize each
pairwise computation. Broder proposed minHash [3] to quickly estimate the
Jaccard similarity of two sets without explicitly computing the intersection and
the union of two sets. By considering our bit-vector fingerprint as a set, we apply
minHash to further transform a large fingerprint into a smaller size signature, and

202 Y. Li et al.

calculate the similarity of minHash signatures to estimate the Jaccard similarity
of the original fingerprints.

To apply minHash, we define a minHash function output of our bit-vector
fingerprint h(fp) to be the first non-zero bit index on a randomly permutated
bits order of the fingerprint. We then apply the same minHash function to two
fingerprint fp, and fpy. This will generate the same minHash value when the
first non-zero bit indexes for two fingerprints fp, and fp, are the same. Since
the probability that the firstly encountered bit is a non-zero bit for fp, and fpy
is conceptually the same as Jaccard similarity Similarity(fpa, fpp) [18], we use
such probability Pr[h(fp,) = h(fpp) to estimate the original Jaccard similarity.

The probability estimation becomes more accurate if more independent min-
Hash functions are used together. Formally, we define a minHash signature
sig(fp) to be a set of k minHash function values extracted from k round of
random permutations over the fingerprint, and represent it as follows: sig(fp) =
[h1(fp), ha(fp), ..., hi(fp)]. We denote the similarity of two minHash signatures as
the ratio of equal elements between sig(fp,) and sig(fpp).

Instead of maintaining & random permutations over the bit-vector, we follow
a common practice for using minHash technique and use k different hash func-
tions to simulate £ random permutations, where each hash function maps a bit
index to a value. In order to create k hash functions, we first generate k random
numbers, then use FNV [9] hash algorithm to produce a basic hash output for
each bit index, and finally apply XOR operation between each random number
and the hash output to get the k hash outputs. For each hash function, we select
the smallest hash value (to simulate the first non-zero bit index) over all of the
bit indexes of the fingerprint as the final hash output.

Note that the FNV hash value and the k random numbers are all 32 bits
unsigned integers, and they can be used to safely simulate random permutation
over 512MB bit-vector fingerprint. In practice, the k¥ value usually needs to be
larger than 100 to generate good enough results [18]. We set k to be 256 in our
experiments, and thus convert each bit-vector fingerprint into a 1 KB minHash
signature.

In order to evaluate the potential impact of Opt-1 on accuracy, we conduct
two experiments on the smallest 50 malware families?: one experiment (Exp-1)
with no optimization, and another experiment (Exp-2) using Opt-1. We used the
clustering output from Exp-1 as a reference, and measured the precision and
recall of the clustering output from Exp-2. The precision and recall indicate how
similar the two experiments results are, and are used to check the impact on
accuracy brought by Opt-1.

Our experiments showed that on average Exp-2 took less than 83% time to
complete compared to Exp-1 for the analyzed families, and the average preci-
sion and recall of the clustering output were 0.993 and 0.986. Opt-1 significantly
reduce the overall memory consumption with minHash signature representa-
tion and improve the pairwise computation efficiency with almost zero accuracy
penalty.

4 We select those families since their family sizes are under 100 and all the experiments
for those families can be finished within 1 h.

Android Malware Clustering Through Malicious Payload Mining 203

5.2 Opt-2: Employ approximate clustering

The previous optimization is still not sufficient for using the algorithm to analyze
large scale malware samples. For instance, when analyzing with 2,000 samples,
the algorithm will create 1,999,000 candidate payloads, and it results in approx-
imately 2.0 x 10'2 pairwise comparison. Even 1% of the total comparison still
takes lots of computation resources. To resolve the scalability issue for a large
dataset input, we further adopt prototype-based clustering technique [16,22] to
achieve approximate clustering.

Specifically, we randomly divide the target samples into small size (e.g., 150)
groups. For each group, we apply hierarchical clustering analysis on the shared
payload within the group, and create a prototype fingerprint for each payload
cluster by applying intersection analysis (to obtain all the shared 1-bit) among
the payload fingerprints in each cluster. We then conduct hierarchical clustering
analysis on all the collected prototype fingerprints. In this way, we represent
a group of similar payload fingerprints with a single prototype fingerprint, and
the algorithm proceeds with approximate clustering analysis using the prototype
fingerprints instead of the original payload fingerprints.

We design two experiments to evaluate the impact of Opt-2 on accuracy:
one experiment (Exp-3) using Opt-1 only, and another experiment (Exp-4) using
Opt-1 and Opt-2. Due to the quartic complexity of the original algorithm, the
overall analysis (using Opt-1 only) will get dramatically slower for analyzing
larger number of malware samples. For instance, we found it takes about one
day to analyze 1000 samples and more than five days to analyze 2000 samples
for Exp-3. In order to conduct the evaluation within reasonable amount of time,
we randomly select 70% of labeled samples from the largest 4 malware families
and conduct the two experiments for each family. We used the clustering output
generated by Exp-3 as reference, and measured the precision and recall of the
clustering output generated by Exp-4 to evaluate the accuracy impact brought
by Opt-2.

Our experiments showed that on average Exp-4 can speed up more than
95% compared to Exp-3, and the average precision and recall for the analyzed
4 families were 0.955 and 0.932. This optimization makes it feasible to apply
our algorithm to analyze a bigger scale of malware families while providing a
desirable trade-off option between speed and accuracy.

6 Experiments

In this section, we describe the data preparation procedure, and report malware
clustering results and key findings of our experiments.

6.1 Data Preparation

We obtained a large collection of potentially malicious Android apps (rang-
ing from late 2010 to early 2016) from various sources, include Google Play,

204 Y. Li et al.

VirusShare [23] and third party security companies. In order to prepare ground-
truth family labeling for the datasets, we queried the collected apps against
VirusTotal [29] around April 2016, and used the scanning results to filter out
potentially ambiguous apps.

To assign family labels to the collected malware samples, we applied the
following steps: (1) tokenized VirusTotal scanning results and normalized the
contained keywords, and then counted the total number of occurrences of
each keyword. (2) removed all the generic keywords such as Virus, Trojan,
and Malicious. (3) detected keyword aliases by calculating the edit distances
between keywords. For example, Nickyspy, Nickspy, Nicky, and Nickibot were
all consolidated into Nickispy. (4) assigned the dominant keyword as the family
label for the sample. A keyword was considered as dominant if it satisfied two
conditions: (a) the count of the keyword was larger than a predefined threshold
t (e.g., t=10), and (b) the count of the most popular keyword was at least twice
larger than the counts of any other keywords.

Table 2. Clearly labeled malware families

Name Size | Name Size | Name Size | Name Size | Name Size
Dowgin 3280 | Minimob 145 | Erop 48 Vidro 23 Koomer 15
Fakeinst 3138 | Gumen 145 | Andup 48 | Winge 19 | Vmvol 13
Adwo 2702 | Basebridge 144 | Boxer 44 | Penetho 19 Opfake 13
Plankton 1725 | Gingermaster | 122 | Ksapp 39 Mobiletx 19 Uuserv 12
Wapsx 1657 | Appquanta 93 | Yzhc 37 Moavt 19 Svpeng 12
Mecor 1604 | Geinimi 86 | Mtk 35 | Tekwon 18 Steek 12
Kuguo 1167 | Mobidash 83 | Adflex 32 Jsmshider 18 Spybubble | 12
Youmi 790 | Kyview 80 | Fakeplayer | 31 Cova 17 Nickispy 12
Droidkungfu | 561 | Pjapps 75 | Adrd 30 Badao 17 Fakeangry | 12
Mseg 245 | Bankun 70 | Zitmo 29 Spambot 16 Utchi 11
Bogx 214 | Nandrobox 65 | Viser 26 Fjcon 16 Lien 11
Airpush 183 | Clicker 58 | Fakedoc 26 Faketimer 16 Ramnit 9
Smskey 166 | Golddream 54 | Stealer 25 Bgserv 16

Kmin 158 | Androrat 49 | Updtkiller | 24 Mmarketpay | 15

Although our malware labeling process may look similar to AVclass [27], we
developed the approach independently without the knowledge of the AVclass;
and both work was finished around the same time. The unlabeled samples were
not included in the malware dataset for clustering analysis. In summary, we
collected 19,725 labeled malware samples from 68 different families, and the
detailed breakup of the malware samples is shown in Table 2.

Besides the above labeled malware dataset, we also collected Android
Genome malware samples [34] to obtain an optimal clustering threshold, and
randomly selected a list of 10,000 benign samples from AndroZoo [1] to evaluate
the accuracy of the library removal procedure. In particular, we selected benign

Android Malware Clustering Through Malicious Payload Mining 205

apps that were created around the same time (before Jan 1st, 2016) as most of
the labeled malware samples, and their latest (Mar 2017) VirusTotal re-scanning
results showed no malicious labels.

6.2 Feature Collision Analysis

The accuracy of the proposed clustering system and the correctness of the recon-
structed malicious payloads relies on the assumption that unique features will
be mapped to unique bit locations within the bit-vector fingerprint. Feature col-
lision is directly impacted by two parameters: an n-gram size, and a bit-vector
fingerprint size. To evaluate a feature collision rate, we varied the n-gram size
(2 and 4) and the bit-vector fingerprint size, and then measured how many
unique features were mapped to the same single bit position, i.e., feature colli-
sion. Figureb illustrates feature collision with regard to different n-gram sizes
and fingerprint sizes.

The graph shows that feature collision occurs more frequently when the fin-
gerprint size is small. The total number of unique features depends on the n-
gram size. For the labeled malware, it was about 4.1 million for 2-gram features,
and 14.4 million for 4-gram features. And for the benign dataset, it was about
15.2 million for 2-gram features, and 45.3 million for 4-gram features. Accord-
ing to the pigeonhole principle, when putting N unique features into M buckets,
with V > M, at least one bucket would contain more than one unique features.
This means that we need to set the bit-vector fingerprint size larger than the
total number of unique features to reduce feature collision. Therefore, we set the
default n-gram size to be 2 and default fingerprint size to be 1024 KB which pro-
vides 8,388,608 unique bit positions. With the above configuration, the unique
feature per bit value was reduced to 0.49 to process the labeled malware dataset.
Notice that the complete feature space is unlimited for our system due to the
inclusion of arbitrary string values, however the true unique features contained
in a certain dataset will be limited.

Random feature collision status analysis Precision and recall value distribution of library removal

—— benign dataset / 2-gram features 35001 mmm Precision
404 —— benign dataset / 4-gram features Recall

—— malware dataset / 2-gram features
malware dataset / 4-gram features

0

PN | LLL[[

250 500 750 1000 1250 1500 1750 2000 0.2 0.4 0.6 0.8 1.
Bit-vector fingerprint size (KB) Precision and recall values

3000 4

Number of applications
BN
G 8
g 3 2
g 8 8

Unique features per bit position
"
S
8

w
o
S

o

o
o

o

Fig. 5. Random feature collision status Fig. 6. Benign apps lib removal accuracy

206 Y. Liet al.

6.3 Library Removal Accuracy

Besides the random feature collision discussed in the previous section, it is also
possible that feature collision may happen between the app code and the irrel-
evant versions of the library code. To evaluate the library removal accuracy, we
assumed the libraries used in benign samples were not purposefully manipulated,
and measured the precision (e.g., how much of the removed code is true library
code) and recall (e.g., how much of the true library code is removed) of library
code removal results for the prepared benign samples. Particularly, we consid-
ered the code that were defined under the official library names in the benign
samples as ground truth library code, and created the true library code finger-
print fpiue by mapping all the features from the true library code to a bit-vector
fingerprint. After removing the library code from each app, we identified the bit
positions that were presented in the original app fingerprint and were removed
subsequently; and used the identified bit positions to generate removed library
code fingerprint fpremoved- Using the containment ratio calculation function as

. .) . . S (FPurueAPremon
discussed in Sect. 3.1, library removal precision Py, is defined as W,

and library removal recall Ry, is defined as W, where S(-) denotes
the number of 1-bits in the bit-vector.

Figure 6 depicts the library removal precision and recall for the benign apps.
We observed that 9,215 benign apps contained at least one legitimate library,
and the median values for precision and recall were 0.94, 0.95, respectively. We
manually inspected certain corner cases with poor precision or recall. The poor
precision cases were due to incomplete true library code extraction, e.g., an older
version of Admob library contained obfuscated version of code which were not
under com.google domain, thus not counted as true library code. The poor
recall cases were due to excessive true library code inclusion, e.g., all the code
of the Androidify app was defined under com.google domain which made the
distinction of library code obscure.

6.4 Malware Clustering Results

In order to select an optimal clustering threshold for the system and assess the
performance comparing with other known Android malware clustering system,
we first applied our clustering system on the Android Genome malware dataset.
We used the classical precision and recall [2,12,14,19,22,30] measurements to
evaluate the accuracy of clustering results. Figure 7 describes the clustering pre-
cision and recall results with various thresholds.

The highest F-measure score was 0.82 with precision of 0.90 and recall of 0.75
when the clustering threshold was 0.85. We set the default clustering threshold
value to be 0.85 for subsequent clustering analysis. As a reference, ClusThe-
Droid [17] achieved precision of 0.74 and recall of 0.73 while clustering 939 of
Android Genome malware samples.

Note that the clustering outputs produced by our system is per sub-version
instead of per family, therefore it is more challenging to properly obtain fine-
grained ground truth labels to evaluate the accuracy. In fact, this was the main

Android Malware Clustering Through Malicious Payload Mining 207

‘Datasets ‘ ‘ Samples ‘ Clusters ‘ Precision ‘ Recall‘

Precision and recall with regard to different thresholds

10 D1 1064 [33 0.977 [0.972
D2 1462 27 0.987 [0.964

Los D3 1708 29 0.985 [0.978
% oe D4 1039 | 31 0.971 10.960
s D5 2277 29 0.988 | 0.939
Z o D6 1066 | 30 0.971 [0.919
2 D7 1256 29 0.985 |0.981
= oz - D8 1680 29 0.985 [0.980
, — e D9 2074 | 31 0.996 | 0.858
oo S D10 1612 31 0.992 | 0.989

Fig. 7. Clustering results of Android Fig. 8. Clustering results of different
Genome malware dataset sub-version datasets

reason for a bit low recall of our system with respect to coarse-grained ground
truth labels, e.g., one Android malware family samples might contain multiple
versions of malicious payloads. While reviewing the clustering results, we noticed
that 13 families of the Genome dataset contained more than one versions of
malicious payloads. For example, Basebridge contained 7 versions of malicious
payloads with threshold of 0.85.

Therefore, we separated the labeled malware samples into sub-versions using
the clustering system, and further designed several experiments to evaluate the
clustering results with manually verified sub-version ground-truth. We manu-
ally verified the correctness of the sub-version cluster results. For the generated
sub-version clusters, we first checked if the extracted payload was the indeed
malicious. Since each version of the extracted payloads usually had similar class
names and Dalvik code sequences, the maliciousness of the extracted payload can
be spotted by checking the extracted class names (e.g., similar pseudo-random
pattern). In case the class names were not enough to determine its malicious-
ness, we then went through the reconstructed code segments and checked if
there were any suspicious activities or behaviors, such as stealthily sending out
premium SMS. After verifying the maliciousness of the extracted payload, we
then randomly selected 3 samples from each sub-version group, and checked if
the selected apps contained the same version malicious payload. Out of 19,725
malware samples that were labeled with 68 families, we obtained a total of 260
verified sub-version clusters, and each cluster corresponded to one version of the
malicious payloads.

We considered the VirusTotal family labels together with the manually
verified sub-version information as ground truth, and prepared 10 experiment
datasets. For each dataset, we randomly selected 30 sub-versions from the entire
ground truth dataset (e.g., 260 sub-versions), then mixed the selected samples
together as one input dataset. The resulting datasets had different overall sizes
as each individual sub-version had different numbers of samples. The detailed
dataset sizes and sample clustering results for the 10 datasets are presented in
Fig.8. On average, the sample clustering algorithm separated the input mal-
ware samples into 29.9 clusters, which was extremely close to the reference set

208 Y. Liet al.

(i.e., 30 sub-versions). For the 10 experiment datasets, the clustering algorithm
achieved average precision of 0.984 and average recall of 0.959, the worst precision
and recall for clustering multiple malware families were 0.971 and 0.858, which
suggests that the clustering system generated consistent and reliable outputs.

6.5 Key Findings for Malicious Payload Analysis

In this section, we report the key findings learned from the malware sub-version
verification process.

Significant library code ratio: From the labeled malware datasets, we found
that the average library code ratio was larger than 50% for the malware sam-
ples that contained at least one legitimate library. This highlights that existing
Android malware similarity analysis work becomes ineffective without properly
handling library code.

Limited versions of malicious payloads: During our experiments, we
acquired 260 versions of malicious payloads from 68 labeled malware families
while conducting clustering of each family. Among the 68 malware families,
27 families had only one version of malicious payload, and 5 families had more
than 10 different versions of malicious payloads. For example, Dowgin was the
largest malware family and had 23 versions of malicious payloads extracted.

Malicious payload under popular namespaces: We conducted manual
analysis on the extracted malicious payloads, and noted that 29% of Android
malware families injected their malicious payloads under popular namespaces,
such as com.google and com.android, or legitimate advertisement library
namespaces like com.umeng. Table 3 in Appendix includes the detailed malicious
payload findings for the identified families. Since com.google and com.android
are the main class names used by Android Open Source Project and Google
Mobile Services, such malicious payloads can easily get overlooked.

7 Limitation

Our Android malware clustering approach is based on the assumption that mal-
ware authors often reuse the same malicious payload to create new malicious
samples, and the obfuscated code sequences of malicious payload would largely
remain the same if they are generated by the same obfuscation tool. This is con-
sistent with our findings as listed in Sect. 6.5. Theoretically, advanced obfusca-
tion techniques (e.g., class encryption or dynamic loading) can eventually break
the assumption by generating a new version of a malicious payload for every
new malware instance, or completely removing the original malicious payload
from classes.dex. The attack and defense against malware obfuscation is a
long-term arms race, and has already been observed in the traditional desk-
top malware analysis domain. For example, as observed in desktop malware
research [15,20,24], independent systems might be desirable to specifically han-
dle the de-obfuscation process. We consider it as a separate pre-processing step

Android Malware Clustering Through Malicious Payload Mining 209

for malware analysis, and leave a comprehensive solution for advanced obfus-
cation as an orthogonal problem. In addition, using dynamic analysis with a
sandbox can help further analyze malware. However, dynamic analysis also suf-
fers from its own limitations, such as sandbox evasion and code coverage.

We believe that the Android malware analysis community can benefit from
our work in several aspects. (a) It offers an alternative malicious payload extrac-
tion approach in which we can extract a more complete version of malicious pay-
loads even if the malicious payloads are injected under popular library names
or under existing functions. (b) It provides a viable solution for conducting
Android malware clustering analysis by checking if malware samples contain
the same version of malicious payloads. (¢) Majority of Android malware sam-
ples are not obfuscated or obfuscated by simple obfuscation tools, even for the
samples we collected recently. For example, within the extracted 260 versions
of malicious payloads, we observed 181 of them had plain code, and only 79 of
them used naming obfuscation, which was a simple basic obfuscation technique
being used in practice. (d) As long as there are shared malicious code segments
regardless of obfuscation among the samples from the same malware family,
our algorithm extracts the shared patterns and uses them for deciding malware
clustering output.

8 Related Work

8.1 Android Malware Clustering and App Similarity Analysis

Due to the challenges that are discussed in Sect. 1, existing Android malware
clustering approaches have not been widely adopted yet. ClusTheDroid [17] was
a system for clustering Android malware using 38 features extracted from profiles
of reconstructed dynamic behaviors. Samra [25] extracted features from Android
app manifest files, and could only cluster applications into two categories using
K-means algorithm. Without properly excluding the features or behaviors that
belong to the original benign apps or legitimate libraries, traditional clustering
approaches would not be able to produce promising results.

Similarity analysis is essential for clustering, but existing Android applica-
tion similarity analysis techniques were mainly designed to detect repackaged
apps [11,31,33], and such overall similarity analysis based techniques cannot be
directly applied for Android malware clustering for reasons described in Sect. 1.
SMART [21] proposed a semantic model for Android malware analysis, but was
mainly built for malware detection and classification. Both Juxtapp [11] and
our system use n-gram bytecode features and feature hashing [13,14,26] as basic
building blocks. However, Juxtapp excluded library code for further analysis if
the core application component does not directly invoke it, which still couldn’t
differentiate a legitimate library and a bogus library with the same legitimate
name. Furthermore, directly using Juxtapp to cluster Android malware will suf-
fer the same limitations like other traditional clustering methods as it is based
on overall similarity.

210 Y. Liet al.

8.2 Android Malicious Payload Analysis

Malicious payload identification and extraction is essential for Android malware
analysis. Zhou and Jiang [34] manually analyzed malicious payloads of Android
malware and summarized the findings in the Android Malware Genome project.
DroidAnalytics [32] presented a multi-level signature based analytics system to
examine and associate repackaged Android malware. MassVet [5] analyzed graph
similarity at the function level and extracted the shared non-legitimate func-
tions as malicious payloads through commonality and differential analysis, and
it applied a whitelist to exclude legitimate library code from analysis.

MassVet [5] is close to our work in that both extract malicious payloads
from Android malware. However, similar to existing Android malware analysis
work [4-6,8,10], MassVet simply used library name based whitelists to exclude
popular library code, which can result in the failure of malicious payload extrac-
tion, and lead to false negatives in malware detection if malicious payloads are
injected under popular library namespaces. In addition, due to the function
level payload granularity of MassVet, it can not be easily designed to achieve
payload-sharing based Android malware clustering, since the same function could
be shared by different malware families, and the malware samples from the
same family usually share multiple functions at the same time. Last but not
least, MassVet won’t be able to extract malicious payload injected under exist-
ing functions, while the instruction level payload granularity designed by our
approach enables us to precisely identify one version of malicious payload from
each Android malware, which includes all of the malicious components even if
they are injected in existing functions or across different functions.

9 Conclusion

In this paper, we proposed a practical solution to conduct Android malware clus-
tering. As an internal component, the fingerprint based library removal technique
was used to distinguish a legitimate library and a bogus library that may share
the same library name. Unlike traditional clustering techniques which exam-
ine the overall similarity, we achieved Android malware clustering by checking
whether the analyzed Android malware samples shared the same version of mali-
cious payload code. Compared with existing malicious payload extraction sys-
tem, our approach extracts malicious payloads even if they were injected under
popular library namespaces or under existing benign functions, and it provides
a more complete picture of the whole malicious payload. Our comprehensive
experimental results demonstrate that our clustering approach generates consis-
tent and reliable outputs with high precision and recall.

Acknowledgment. This work was partially supported by the U.S. National Science
Foundation under Grant No. 1314925, 1622402 and 1717862. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

Android Malware Clustering Through Malicious Payload Mining 211

References

10.

11.

12.

13.

14.

15.

16.

Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: collecting millions of
android apps for the research community. In: Proceedings of the 13th International
Conference on Mining Software Repositories, pp. 468-471. ACM (2016)

Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. NDSS 9, 8-11 (2009)

Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997, Proceedings, pp. 21-29. IEEE (1997)

Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously
in detecting application clones on android markets. In: Proceedings of the 36th
International Conference on Software Engineering, pp. 175-186. ACM (2014)
Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu,
P.: Finding unknown malice in 10 seconds: mass vetting for new threats at the
Google-play scale. In: USENIX Security Symposium, vol. 15 (2015)

Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applica-
tions on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37-54. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33167-1_3

Dexdump (2015). http://developer.android.com/tools/help/index.html

Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 73-84. ACM (2013)
Fowler, G., Noll, L.C., Vo, K.P.: Fnv hash (2015). http://www.isthe.com/chongo/
tech/comp/fnv/

Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, pp. 281-294. ACM
(2012)

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system
for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62-81. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37300-8_4

Hu, X., Shin, K.G.: DUET: integration of dynamic and static analyses for malware
clustering with cluster ensembles. In: Annual Computer Security Applications Con-
ference (2013)

Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: Mutantx-s: scalable malware clustering
based on static features. In: USENIX Annual Technical Conference, pp. 187-198
(2013)

Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, pp. 309-320. ACM (2011)

Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM Workshop on Recurring Malcode,
pp. 46-53. ACM (2007)

Kim, J., Krishnapuram, R., Davé, R.: Application of the least trimmed squares
technique to prototype-based clustering. Pattern Recognit. Lett. 17(6), 633-641
(1996)

http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://developer.android.com/tools/help/index.html
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://dx.doi.org/10.1007/978-3-642-37300-8_4

212

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

31.

Y. Liet al.

Korczynski, D.: ClusTheDroid: clustering android malware. Master’s thesis, Royal
Holloway University of London (2015)

Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

Li, Y., Sundaramurthy, S.C., Bardas, A.G., Ou, X., Caragea, D., Hu, X., Jang, J.:
Experimental study of fuzzy hashing in malware clustering analysis. In: Proceed-
ings of the 8th USENIX Conference on Cyber Security Experimentation and Test,
p. 8. USENIX Association (2015)

Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast, generic, and safe
unpacking of malware. In: Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), pp. 431-441. IEEE (2007)

Meng, G., Xue, Y., Xu, Z., Liu, Y., Zhang, J., Narayanan, A.: Semantic modelling of
android malware for effective malware comprehension, detection, and classification.
In: Proceedings of the 25th International Symposium on Software Testing and
Analysis, pp. 306-317. ACM (2016)

Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639-668 (2011)

Roberts, J.: VirusShare.com (2015). http://virusshare.com/

Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automat-
ing the hidden-code extraction of unpack-executing malware. In: Proceedings of
the 22nd Annual Computer Security Applications Conference, pp. 289-300. IEEE
Computer Society (2006)

Samra, A.A.A., Yim, K., Ghanem, O.A.: Analysis of clustering technique in android
malware detection. In: 2013 Seventh International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), pp. 729-733. IEEE (2013)
Santos, 1., Nieves, J., Bringas, P.G.: Semi-supervised learning for unknown malware
detection. In: Abraham, A., Corchado, M., Gonzélez, S.R., De Paz Santana, J.F.
(eds.) International Symposium on Distributed Computing and Artificial Intelli-
gence. Advances in Intelligent and Soft Computing, vol. 91, pp. 415-422. Springer,
Heidelberg (2011)

Sebastidn, M., Rivera, R., Kotzias, P., Caballero, J.: AVCLASS: a tool for massive
malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
RAID 2016. LNCS, vol. 9854, pp. 230-253. Springer, Cham (2016). doi:10.1007/
978-3-319-45719-2_11

Snell, B.: Mobile threat report, what’s on the horizon for 2016 (2016). http://www.
mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf

Virustotal (2017). https://www.virustotal.com

Ye, Y., Li, T\, Chen, Y., Jiang, Q.: Automatic malware categorization using cluster
ensemble. In: ACM SIGKDD International Conference on Knowledge Discovery
and Data mining (2010)

Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: Viewdroid: towards obfuscation-
resilient mobile application repackaging detection. In: Proceedings of the 2014
ACM Conference on Security and Privacy in Wireless & Mobile Networks, pp.
25-36. ACM (2014)

http://virusshare.com/
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.virustotal.com

32.

33.

34.

Android Malware Clustering Through Malicious Payload Mining 213

Zheng, M., Sun, M., Lui, J.: DroidAnalytics: a signature based analytic system
to collect, extract, analyze and associate Android malware. In: 2013 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 163-171. IEEE (2013)

Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party Android marketplaces. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy, pp. 317-326. ACM
(2012)

Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 95-109. IEEE (2012)

214 Y. Li et al.

A Detailed malicious payload mining results

Table 3.

Malicious payload under popular libraries

Family

Popular class names used

Nickispy

com.google.android.info.SmsInfo

com.google.android.service.UploadService

Uuserv

com.uuservice.status.SysCaller.callSilentInstall

com.uuservice.status.SilenceTool.MyThread.run

Fjcon

com.android. XWLauncher.CustomShirtcutActivity

com.android. XWLauncher.InstallShortcutReceiver

Yzhc

com.android.Base.Tools.replace_name

com.android.JawbreakerSuper.Deamon

Gumen

com.umeng.adutils. AdsConnect

com.umeng.adutils.SplashActivity

Basebridge

com.android.sf.dna.Collection

com.android.battery.a.pa

Spambot

com.android.providers.message.SMSObserver

com.android.providers.message.Utils.sendSms

Moavt

com.android. MJSrceen. Activity. BiglmageActivity

com.android.service.MouaService.InitSms

Zitmo

com.android.security.SecurityService.onStart

com.android.smon.SecurityReceiver.sendSMS

Mseg

com.google.vending.CmdReceiver

android.ad.appoffer.Copy-2_of_DownloadManager

Droidkungfu

com.google.ssearch.SearchService

com.google.update.UpdateService

Dowgin

com.android.qiushui.app.dmc

com.android.game.xiaoqiang.jokes.Data9

Fakeinst

com.googleapi.cover.Actor

com.android.shine.MainActivity.proglayss_Click

Ksapp

com.google.ads.analytics. Googleplay

com.google.ads.analytics.ZipDecryptInputStream

Bankun

com.google.game.store.bean.MyConfig.get Msg

com.google.dubest.eight.isAvilible

Pjapps

com.android.MainService.SMSReceiver

com.android.main. TANCActivity

Adwo

com.android.mmreader1030

com.google.ads.AdRequest.isTestDevice

Svpeng

com.adobe.flashplayer_.FV.doInBackground

com.adobe.flashplayer_.FA .startService

Opfake

com.android.appupdate.UpdateService

com.android.system.SurpriseService

Badao

com.google.android.gmses.MyApp

com.android.secphone.FileUtil.clearTxt

	Android Malware Clustering Through Malicious Payload Mining
	1 Introduction
	2 Overview of Android Malware Clustering System
	3 App Fingerprint Representation and Utilization
	3.1 Fingerprint Generation and Fingerprint Comparison
	3.2 Fingerprint Based Library Code Removal
	3.3 Fingerprint Based Candidate Payload Extraction
	3.4 Fingerprint Based Malicious Payload Reconstruction

	4 Malicious Payload Mining
	5 Optimize Overall Clustering Efficiency
	5.1 Opt-1: Optimize Each Pairwise Computation
	5.2 Opt-2: Employ approximate clustering

	6 Experiments
	6.1 Data Preparation
	6.2 Feature Collision Analysis
	6.3 Library Removal Accuracy
	6.4 Malware Clustering Results
	6.5 Key Findings for Malicious Payload Analysis

	7 Limitation
	8 Related Work
	8.1 Android Malware Clustering and App Similarity Analysis
	8.2 Android Malicious Payload Analysis

	9 Conclusion
	References
	A Detailed malicious payload mining results

